首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have observed cooldown-to-cooldown changes in the reverse-bias dark current of some very long-wavelength (cutoff >14 μm) HgCdTe P-on-n heterojunction photodiodes operated at very low temperatures (40–45 K). Other photodiodes in the same arrays are stable between cooldowns. The unstable ones have high dark currents, in the tail of the dark current distribution. Current-voltage analysis indicates that the high dark current is caused by trap-assisted tunneling and that the number of traps changes from cooldown to cooldown. Devices with negligible trap-assisted tunneling current, limited by diffusion and band-to-band tunneling currents at reverse bias, are stable between cooldowns. Both types of devices are stable within a given cooldown over periods of at least 24 h.  相似文献   

2.
A long-wavelength infrared (LWIR) HgCdTe photodiode fabrication process has been developed based on reactive ion etching (RIE) plasma-induced p-to-n type conversion for junction formation. The process has been successfully applied to produce devices using both vacancy-doped and gold-doped liquid phase epitaxy (LPE)-grown p-type HgCdTe material with a cut-off wavelength of 10 μm at 77 K. The fabrication procedure is outlined and results are presented on completed devices that indicate the effect of variations in processing parameters. The fabricated devices have been characterized by measurements of the diode dark I-V characteristic over the temperature range 20–200 K, as well as by spectral responsivity measurements. Analysis of the device I-V data, variable area data, and modeling of diode dark current mechanisms indicates that gold-doped material results in higher performing devices compared to vacancy-doped material. Device performance is found to be strongly affected by trap-assisted tunneling currents and surface leakage currents at zero bias. Nonoptimum surface passivation is likely to be the major factor limiting performance at this early stage of device technology development.  相似文献   

3.
A 3-D impedance method has been introduced to compute the electric currents induced in a human body exposed to extremely low-frequency electromagnetic field.The 3-D impedance method has been deduced from Maxwell equations and is put into the computation and simulation effectively to the visible human body model, which has 196×114×626 cells and more than 40 types of tissues.As the result, two representative cases are investigated.One is exposure of the human body to 100 μT (1 000 mG), the limit recommended by the International Commission on Non-Ionizing Radiation Protection for the public and the other one is the exposure of human body to 0.4 μT (4 mG), the level at which a statistical link appears with a doubled risk of development of childhood leukaemia.The distribution of induced current density can be obtained and the maximum of induced current are found to be 16 mA/m2 and 0.07 mA/m2.  相似文献   

4.
New results are reported on the growth of high performance medium wavelength infrared (3–5 μm) (MWIR) HgCdTe photodiodes in the three-layer P-n-N configuration. The detector structures were grown in situ by metalorganic vapor phase epitaxy (MOVPE) on (211)B oriented CdZnTe substrates. The mobilities of the single n-type layers with x-values of ∼0.30 are in the range of (3–4.5)×104 cm2/V-s at 80K. The lifetimes on unpassivated films range from 1–5 and 4–10 μs at 80 and 180K, respectively, which are within a factor of two or less of the lifetimes calculated for Auger-1 and radiative recombination. The P-n-N films were processed into variable-area backside-illuminated diagnostic arrays and tested for quantum efficiency, spectral response, RDA, I–V curves and 1/f noise in the 120–180K range. The internal one-dimensional quantum efficiencies are in the range of 85–100%. The optical collection lengths are typically ∼25 μm. I–V curves showed that diffusion current is the dominant junction current mechanism for temperatures ≥100K. R0A values are at the one-dimensional limit for n-side diffusion currents over the 100–180K range. 1/f noise was measured to be very low at 120K and is the same as that measured in similarly processed arrays from recent LPE grown P-on-N heterojunctions. The results demonstrate that MOVPE growth can be used for large area, high performance MWIR HgCdTe detector arrays operating in the 120–180K temperature range.  相似文献   

5.
Short-wave infrared (SWIR) HgCdTe focal-plane arrays (FPAs) with a cutoff wavelength of 2.5 μm have been produced using both planar ion-implanted and heterojunction-mesa device structures. The two-dimesnional FPAs are comprised of a 320×256 format with 30-μm pixel pitch and are cooled by a multistage thermo-electric (TE) cooler. Measured R0A values of the two types of device structures show similar results below about 130 K because of the performance-limiting effect of the surface passivation of the heterojunction. However, a substantial difference is seen above 130 K and up to 300 K between the two structures types, with the heterojunction-mesa p-on-n device having an order of magnitude higher R0A value than the planar ion-implanted n-on-p configuration. The difference in the R0A values is reflected in the FPA images of the two different device types, where at 200 K, both FPAs display a clear picture with the n-on-p implanted device having a somewhat lesser resolution. However, no image can be seen from the planar-implanted FPA at 300 K, whereas the heterojunction-mesa FPA still exhibits a notable image at this temperature. These differences are examined and are attributed largely to higher diffusion and generation-recombination (g-r) currents that are thought to be prevalent in the ion-implanted n-on-p device structure. Yet, baking studies carried out show the ion-implanted diodes to be slightly more robust, as experiments reveal that they tend to survive a 120°C heat treatment longer than the mesa devices, which tend to degrade after a certain period of time. The nature of n-type donors in ion-implanted diodes is discussed, and a new theory based on Te antisites is proposed to explain recent experimental findings.  相似文献   

6.
A bimodal effect of transconductance was observed in narrow channel PDSOI sub-micron H-gate PMOSFETs,which was accompanied with the degeneration of device performance.This paper presents a study of the transconductance bimodal effect based on the manufacturing process and electrical properties of those devices.It is shown that this effect is caused by a diffusion of donor impurities from the NC region of body contact to the PC poly gate at the neck of the H-gate,which would change the work function differences of the polysilicon gate and substrate.This means that the threshold voltage of the device is different in the width direction,which means that there are parasitic transistors paralleled with the main transistor at the neck of the H-gate.The subsequent devices were fabricated with layout optimization,and it is demonstrated that the bimodal transconductance can be eliminated by mask modification with NC implantation more than 0.2 m away from a poly gate.  相似文献   

7.
We report on Hg1−xCdxTe mid-wavelength infrared (MWIR) detectors grown by molecular-beam epitaxy (MBE) on CdZnTe substrates. Current-voltage (I-V) characteristics of HgCdTe-MWIR devices and temperature dependence of focal-plane array (FPA) dark current have been investigated and compared with the most recent InSb published data. These MWIR p-on-n Hg1−xCdxTe/CdZnTe heterostructure detectors give outstanding performance, and at 68 K, they are limited by diffusion currents. For temperatures lower than 68 K, in the near small-bias region, another current is dominant. This current has lower sensitivity to temperature and most likely is of tunneling origin. High-performance MWIR devices and arrays were fabricated with median RoA values of 3.96 × 1010 Ω-cm2 at 78 K and 1.27 × 1012 Ω-cm2 at 60 K; the quantum efficiency (QE) without an antireflection (AR) coating was 73% for a cutoff wavelength of 5.3 μm at 78 K. The QE measurement was performed with a narrow pass filter centered at 3.5 μm. Many large-format MWIR 1024 × 1024 FPAs were fabricated and tested as a function of temperature to confirm the ultra-low dark currents observed in individual devices. For these MWIR FPAs, dark current as low as 0.01 e/pixel/sec at 58 K for 18 × 18 μm pixels was measured. The 1024 × 1024 array operability and AR-coated QE at 78 K were 99.48% and 88.3%, respectively. A comparison of these results with the state-of-the-art InSb-detector data suggests MWIR-HgCdTe devices have significantly higher performance in the 30–120 K temperature range. The InSb detectors are dominated by generation-recombination (G-R) currents in the 60–120 K temperature range because of a defect center in the energy gap, whereas MWIR-HgCdTe detectors do not exhibit G-R-type currents in this temperature range and are limited by diffusion currents.  相似文献   

8.
Owing to the fact that the LED drive circuit must have constant output current control, we propose a controlled current driver with a high precision for the white light LED. Three discrete constant current settings are available and may be selected at the supply voltage from 2.9 V to 4.4 V, which is up to 1 A. An autozero transconductance amplifier is proposed, which effectively improves the precision, reduces the offset voltage and the noise. The variation in the ratio of the external resistor current to the LED load current is less than 2.3%, when the LED load current changes from 200 mA to 800 mA.  相似文献   

9.
Over the last several years cooled applications of HgCdTe at low temperatures have proliferated. Having low fundamental dark current at any given wavelength and temperature makes HgCdTe attractive for high temperature applications as well. We are exploring detectors with cut off wavelengths from the near to middle infrared region (∼1.5 to ∼4 μm). Theory allows applications from low light level imaging in starlight and “nightglow” to thermal imaging, both with useful sensitivities at room temperature. The demonstrated possibility of reducing or eliminating traditional recombination processes (radiative and Auger) further increase the attractiveness of HgCdTe. Current materials technology shows some evidence that these sensitivities can be attained. Current detector technology, being limited by SRH traps, appears to require modest cooling (to about 250K). Improved materials and processes should eliminate the need for even this cooling.  相似文献   

10.
The Ni/p-InP Schottky diodes(SDs) have been prepared by DC magnetron sputtering deposition. After the diode fabrication, they have been thermally annealed at 700 ℃ for 1 min in N2 atmosphere. Then, the current–voltage characteristics of the annealed and non-annealed(as-deposited) SDs have been measured in the measurement temperature range of 60–400 K with steps of 20 K under dark conditions. After 700 ℃ annealing,an improvement in the ideality factor value has been observed from 60 to 200 K and the barrier height(BH)value approximately has remained unchanged in the measurement temperature range of 200–400 K. The BH of the annealed diode has decreased obeying the double-Gaussian distribution(GD) of the BHs with decreasing measurement temperature from 200 to 60 K. The BH for the as-deposited diode has decreased with decreasing temperature obeying the single-GD over the whole measurement temperature range. An effective Richardson constant value of54:21 A/cm2K2 for the as-deposited SD has been obtained from the modified Richardson plot by the single-GD plot, which is in very close agreement with the value of 60 A/K2cm2 for p-type InP. The series resistance value of the annealed SD is lower than that of the non-annealed SD at each temperature and approximately has remained unchanged from 140 to 240 K. Thus, it can be said that an improvement in the diode parameters has been observed due to the thermal annealing at 700 ℃ for 1 min in N2 atmosphere.  相似文献   

11.
In this paper,we present an innovative method of double balanced differential configuration,in which two adjacent single photon avalanche diodes(SPADs)from the same wafer are configured as the first balanced structure,and the output signal from the first balanced stage is subtracted by the attenuated gate driving signal as the second balanced stage.The compact device is cooled down to 236 K to be characterized.At a gate repetition rate of 400 MHz and a1 550 nm laser repetition rate of 10 MHz,the maximum photon detection efficiency of 13.5%can be achieved.The dark count rate is about 10-4 ns-1 at photon detection efficiency of 10%.The afterpulsing probability decreases with time exponentially.It is shown that this configuration is effective to discriminate the ultra-weak avalanche signal in high speed gating rates.  相似文献   

12.
非刻意掺杂4H-SiC同质外延中的深能级缺陷   总被引:1,自引:0,他引:1  
Unintentionally doped 4H-SiC homoepitaxial layers grown by hot-wall chemical vapor deposition (HWCVD) have been studied using photoluminescence (PL) technique in the temperature range of 10 to 240 K. A broadband green luminescence has been observed. Vacancies of carbon (Vc) are revealed by electron spin resonance (ESR) technique at 110 K. The results strongly suggest that the green band luminescence, as shallow donor-deep accepter emission, is attributed to the vacancies of C and the extended defects. The broadband green luminescence spectrum can be fitted by the two Gauss-type spectra using nonlinear optimization technique. It shows that the broad-band green luminescence originates from the combination of two independent radiative transitions. The centers of two energy levels are located 2.378 and 2.130 eV below the conduction band, respectively, and the ends of two energy levels are expanded and superimposed each other.  相似文献   

13.
VLWIR HgCdTe detector current-voltage analysis   总被引:1,自引:0,他引:1  
This article details current-voltage characteristics for a very long wavelength infrared (VLWIR) Hg1−x CdxTe detector from Raytheon Vision Systems with a cutoff wavelength of 20.0 μm at 28 K. In this article, the VLWIR detector diode currents are modeled as a function of bias and temperature. This in-depth current model includes diffusion, band-to-band tunneling, trap-assisted tunneling (TAT), and shunt currents. The trap density has been extracted from the modeled TAT component of the current and was revealed to be relatively temperature-independent. An attempted incorporation of VLWIR detector susceptibility to stress has also been included through variation of the model parameter associated with the p-n junction electric field strength. This field variation accounts for stress induced piezoelectric fields. The current in this VLWIR detector was found to be diffusion-limited under much of the temperature and bias ranges analyzed. This modeling allows the scrutiny of both the dominant current-limiting mechanism and the magnitudes of the various current components as a function of both bias and temperature, allowing the straightforward determination of the ideal operating conditions for a given detector.  相似文献   

14.
<正> An efficient gettering is often performed with a back-side phosphorus diffusion; the mechanisms, not well understood, are generally attributed to induced dislocations and/or phosphide. In this work we demonstrate that the high-surface-concentration phosphorus diffusions and the final annealing at moderate temperature are able to produce gettering action. The increment of generation lifetime, measured by using MOS capacitors of starting silicon materials, and the decrement of the dark current of Dhotoelectric device are reported. The backside phosphorus diffusion (gettering) layer at different temperature has been analyzed with the help of SIMS, then we discuss the new gettering mechanism with the formation of a negatively charged pair and segregation annealing.  相似文献   

15.
A kind of AlGaInP light emitting diode (LED) with surface anti-reflecting structure has been introduced to solve the problems of low light efficiency and restricted luminous intensity. The new structure can be demonstrated theoretically and experimentally, and LEDs with the new structure have higher on-axis luminous intensity and larger saturation current than conventional LEDs and LEDs with ITO film only, which is caused by higher external quantum efficiency and also higher internal quantum efficiency. The new LEDs are especially suitable for working at large injected currents.  相似文献   

16.
The current-voltage characteristics and quantum efficiencies of double layer planar heterostructure photodiodes were investigated. Results are reported on devices with cutoff wavelengths of 1.8, 2.4, and 3.3 μm. For these respective devices, the dominant currents for temperatures >250,>200,>150K are diffusion currents limited by shallow Shockley-Hall-Read (SHR) processes. The remarkable result is that the electrical and optoelectronic properties of these devices of diverse cut-off wavelength can be explained by simple models using independently measured layer parameters such as the minority carrier lifetimes. For all three cases, the analysis suggests that the same shallow (SHR) centers located at 78% of the energy gap are causing the observed effects. These traps located in then-type base of the device are not influenced by the magnitude of n-type doping and this observation was used to significantly improve the performance of the devices and validate the predictive capability of the models used in the analysis. The shallow centers appear to be process induced rather than grown-in. This assertion is based on the observation that changes in the annealing process led to an order of magnitude improvement in the minority carrier lifetime.  相似文献   

17.
This work reports the fabrication and investigation of surface-type organic semiconductor copper phthalocyanine (CuPc) based diode. Thin film of CuPc of thickness 100 nm has been thermally sublimed onto glass substrate with preliminary deposited metallic electrodes to form surface-type Ag/CuPc/Au Schottky diode. Current-voltage characteristics are measured at room temperature under dark condition. The barrier height is calculated as 1.05 eV. The value of mobility and conductivity is found to be and , respectively. It is found that at low voltages the device shows ohmic conduction and a space charge limited current conduction mechanisms are dominated at higher voltages.  相似文献   

18.
CMOS反相器在高功率微波下闩锁效应的温度影响   总被引:1,自引:1,他引:0  
The temperature dependence of the latch-up effects in a CMOS inverter based on 0.5 μm technology caused by high power microwave (HPM) is studied. The malfunction and power supply current characteristics are revealed and adopted as the latch-up criteria. The thermal effect is shown and analyzed in detail. CMOS in- verters operating at high ambient temperature are confirmed to be more susceptible to HPM, which is verified by experimental results from previous literature. Besides the dependence of the latch-up triggering power P on the ambient temperature T follows the power-law equation P = ATβ. Meanwhile, the ever reported latch-up delay time characteristic is interpreted to be affected by the temperature distribution. In addition, it is found that the power threshold increases with the decrease in pulse width but the degree of change with a certain pulse width is constant at different ambient temperatures. Also, the energy absorbed to cause latch-up at a certain temperature is basically sustained at a constant value.  相似文献   

19.
Light-emitting diodes (LED’s) operating in the spectral range 1.9–2.1 μm have been fabricated by liquid-phase epitaxy on the basis of AlGaAsSb/GaInAsSb double heterostructures with a high Al (64%) content in the wide-gap regions. The design of the LED makes it possible to locate the active region near the heat-removal elements of the housing, and pass the light through the GaSb substrate, which is completely unshielded by the contact. The LED’s are investigated in the quasi-continuous (CW) regime and pulsed regime at room temperature. The optical power of the LED’s possesses a linear current dependence over a wide range of currents. A CW optical power as high as 4.6 mW and a peak optical power of 190 mW in the pulsed regime were achieved at room temperature. It is shown that the transition from linear to sublinear current dependence of the optical power is governed by Auger recombination in the pulsed regime at pulse durations as low as 5 μs. Fiz. Tekh. Poluprovodn. 33, 239–242 (February 1999)  相似文献   

20.
A current mode feed-forward gain control(CMFGC)technique is presented,which is applied in the front-end system of a hearing aid chip.Compared with conventional automatic gain control(AGC),CMFGC significantly improves the total harmonic distortion(THD)by digital gain control.To attain the digital gain control codes according to the extremely weak output signal from the microphone,a rectifier and a state controller implemented in current mode are proposed.A prototype chip has been designed based on a 0.13μm standard CMOS process.The measurement results show that the supply voltage can be as low as 0.6 V.And with the 0.8 V supply voltage,the THD is improved and below 0.06%(-64 dB)at the output level of 500 mVp-p,yet the power consumption is limited to 40μW.In addition,the input referred noise is only 4μVrmsand the maximum gain is maintained at 33 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号