首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iranian white-brined cheese was made in open vats using commercial adjunct culture of Lactobacillus helveticus Lh.Bo2 in viable and freeze-shocked (FS) forms. Biochemical and sensory characteristics of the trial cheese were studied during 2 months of ripening. Assessment of primary proteolysis by SDS-PAGE and water soluble nitrogen for the trial cheese showed no or small differences throughout ripening. However, the experimental cheeses exhibited significantly greater rates of free amino group formation. Lipolysis as measured by total free fatty acid was consistently higher in cheese made with the FS adjunct culture. Expert panellists detected significant differences between the control and the experimental cheese.  相似文献   

2.
The effect of goats’ milk lactoperoxidase (LP) system on the activity of commercially available mesophilic cheese starter cultures was investigated. The growth and acid production of the starter cultures were measured at 2 h intervals for 8 h in goats’ milk kept at 30°C. Most of the starter cultures examined were found to be sensitive to the LP system, but varied in their susceptibility to inhibition. The activity of the mixed starter cultures CHN11, CHN22, CHN19, DCC240 and Flora Danica Normal was strongly inhibited by the LP system. However, the mixed starter culture LL 50C showed resistance to the LP system. The single strain culture Lactococcus lactis subsp. lactis NCDO 605 was inhibited by the LP system. However, the cultures Lactococcus lactis subsp. diacetylactis NCDO 176 and Leuconostoc mesenteroides subsp. cremoris ATCC 33313 were insensitive to the LP system. The results of this study indicate the need for routine screening of starter cultures for resistance to the LP system before using them for cheesemaking from goats’ milk preserved by the LP system.  相似文献   

3.
This paper reports on the diversity and dynamics of the dominant microbial populations during manufacturing and ripening of Lighvan, a traditional, starter-free Iranian cheese made from raw ewe and goat’s milk as determined by culturing and PCR-DGGE. Similar dominant populations, composed of Lactococcus lactis and Lactobacillus spp. strains, were found by both techniques. However, discrepancies regarding the identity of the Lactobacillus species were encountered. Lactobacillus curvatus and Lactobacillus sakei proved to be dominant by PCR-DGGE; in contrast, Lactobacillus paraplantarum, Lactobacillus paracasei, Lactobacillus brevis and Lactobacillus plantarum were the majority cultivable organisms. RAPD typing of lactobacilli isolates showed wide genetic diversity among the species. Moreover, strain compositions change over time; L. brevis and L. paraplantarum were dominant in milk and were replaced by L. plantarum and L. paracasei strains as ripening progressed.  相似文献   

4.
The effect of a commercial adjunct culture (CR-213, containing Lactococcus lactis subsp. cremoris and Lactococcus lactis susp. lactis and added at the level of 0.6 g kg−1 or 0.9 g kg−1 cheese milk) on the organic acid (OA) content of low-fat Feta-type cheese was studied. Full-fat (∼220 g kg−1) and a low-fat (∼70 g kg−1) cheeses were used as controls. The main OA of all cheeses throughout ripening were lactic, citric and acetic acids. The effect of ripening time was significant (P < 0.05) for all OA but treatments did not affect acetic, succinic and uric acids. Cheeses with lower fat content were found to contain significantly (P < 0.05) more lactic and citric but less butyric acid than the full-fat control. The addition of the adjunct culture had a positive effect on butyric acid, propionic acid and acetoin content. The use of the adjunct culture could enhance the production of OA in low-fat Feta-type cheeses with eventual positive effect on their sensory properties.  相似文献   

5.
Tyramine is the most abundant biogenic amine in fermented dairy products, in which it is produced through the microbial enzymatic decarboxylation of tyrosine. This activity has been detected in a variety of lactic acid bacteria mainly belonging to the genera Enterococcus and Lactobacillus. This paper describes a culture-independent qPCR method, based on the specific amplification of the tdc gene, for the detection, quantification and identification of bacteria with the ability to produce tyramine. This method was found to be specific and to show a wide dynamic range, thus allowing the quantification of these tdc+ bacterial groups among the complex microbiota of cheese. tdc qPCR was used to follow the development of tdc+ microbiota during the manufacture of a blue-veined cheese (Cabrales) made from raw milk. In this type of cheese, tdc+ enterococci seem to be responsible for the high concentrations of tyramine detected. The method was also used to identify and quantify tdc+ enterococci and lactobacilli in 18 commercially available cheeses. Different types and numbers of these microorganisms were found. Their relationships with the concentration of tyramine and technological factors are discussed.  相似文献   

6.
Seventeen Leuconostoc mesenteroides and 33 Lactobacillus paracasei subsp. paracasei from traditional Pecorino di Filiano cheese were tested for their potential use as adjunct starters, and a study of their genetic variability was carried out. Forty one per cent (41%) of Leumesenteroides and 46% of Lb. paracasei subsp. paracasei showed medium–high proteolytic activity, while high lipolytic activity was detected in 18% of Lb. paracasei subsp. paracasei. The aminopeptidase activity of Lb. paracasei subsp. paracasei was higher than that of Leumesenteroides. Strain diversity by RAPD analysis showed a high degree of heterogeneity. This study identified strains with unusual properties that could be good candidates as adjuncts in a starter to manufacture PF cheese.  相似文献   

7.
The objective of this study was to determine the effect of the partial homogenization of milk and the use of an adjunct lactic culture on the processing, quality and yield of low-fat Chanco cheese.
  Treatments were: T1 normal-fat control and T2 low-fat control. The low-fat treatments were: T3 using homogenized milk, T4 with adjunct lactic culture and T5 both variables.
   It was concluded that the homogenization slightly increased the time of rest after cutting of the curd, and the addition of adjunct lactic culture increased the acidity of whey during a second agitation. Nevertheless, the total time and pH at the end of the process were normal and without significant statistical difference ( P  > 0.05) between treatments. When using homogenized milk the losses of fat in whey decreased by 50% with respect to the low-fat control and nearly 80% in relation to the full fat control. Consequently, the yield was increased. The physical and chemical characteristics of the Chanco cheese were not affected by the studied variables. With respect to the sensory evaluation, significant differences in colour and aroma did not appear, but there were statistically significant differences (P <  0.05) in taste, hardness, adhesiveness, cohesiveness and elasticity between the full-fat control and all the low-fat treatments. In the case of general acceptance, the treatment with adjunct lactic culture was similar to the full-fat control. In addition, it showed the least difference (mild) in elasticity and taste in relation to this control .  相似文献   

8.
Three batches of Manchego cheese were manufactured using one of the following starter culture systems: (1) a defined strain starter culture comprising Lactococcus lactis subsp. lactis and Leuconostoc mesenteroides subsp. dextranicum; (2) the above-defined strain starter culture and an adjunct culture (Lactobacillus plantarum), all these strains being isolated from high-quality Manchego cheeses and (3) a commercial starter consisting of two strains of Lactococcus lactis. Differences in volatile profile and the sensory characteristics of these cheeses were studied. After 4 months of ripening, the two batches of cheese made with the defined strain starter cultures obtained the highest scores for sensory attributes and for the overall impression. Additionally, Purge & Trap and SDE analysis showed a more complex volatile profile in these cheeses than in those made with the commercial starter. Extending the maturation time to 8 months for cheeses made with the defined starter cultures led to significant higher levels of free fatty acids and ethyl esters in those cheeses made without adjunct culture. However, panelists did not find significant differences among the sensory characteristics of the two cheeses.  相似文献   

9.
Improved cheese flavor has been attributed to the addition of adjunct cultures, which provide certain key enzymes for proteolysis and affect the dynamics of starter and nonstarter cultures. Infrared microspectroscopy provides unique fingerprint-like spectra for cheese samples and allows for rapid monitoring of cheese composition during ripening. The objective was to use infrared microspectroscopy and multivariate analysis to evaluate the effect of adjunct cultures on Swiss cheeses during ripening. Swiss cheeses, manufactured using a commercial starter culture combination and 1 of 3 adjunct Lactobacillus spp., were evaluated at d 1, 6, 30, 60, and 90 of ripening. Cheese samples (approximately 20 g) were powdered with liquid nitrogen and homogenized using water and organic solvents, and the water-soluble components were separated. A 3-μL aliquot of the extract was applied onto a reflective microscope slide, vacuum-dried, and analyzed by infrared microspectroscopy. The infrared spectra (900 to 1,800 cm−1) produced specific absorption profiles that allowed for discrimination among different cheese samples. Cheeses manufactured with adjunct cultures showed more uniform and consistent spectral profiles, leading to the formation of tight clusters by pattern-recognition analysis (soft independent modeling of class analogy) as compared with cheeses with no adjuncts, which exhibited more spectral variability among replicated samples. In addition, the soft independent modeling of class analogy discriminating power indicated that cheeses were differentiated predominantly based on the band at 1,122 cm−1, which was associated with S-O vibrations. The greatest changes in the chemical profile of each cheese occurred between d 6 and 30 of warm-room ripening. The band at 1,412 cm−1, which was associated with acidic AA, had the greatest contribution to differentiation, indicating substantial changes in levels of proteolysis during warm-room ripening in addition to propionic acid, acetic acid, and eye formation. A high-throughput infrared microspectroscopy technique was developed that can further the understanding of biochemical changes occurring during the ripening process and provide insight into the role of adjunct nonstarter lactic acid bacteria on the complex process of flavor development in cheeses.  相似文献   

10.
The acceptability of Swiss cheese largely depends on the flavor profile, and strain variations of cheese cultures will affect the final quality. Conventional biochemical methods to identify the cultures at the strain level are time-consuming and expensive, and require skilled labor. Our objective was to develop rapid classification methods of starter cultures at the strain level by using a combination of hydrophobic grid membrane filters and Fourier transform infrared (FTIR) spectroscopy. Forty-four pulsed-field gel electrophoresis-verified strains of starter and nonstarter cultures including Streptococcus thermophilus, Propionibacterium freudenreichii, and Lactobacillus spp. were analyzed. The strains were grown on their respective agar media, transferred to broth media, and incubated. Then, cultures were centrifuged and the pellets were resuspended in saline solution (10 μL). Aliquots (2 μL) of the suspended bacterial solution were placed onto a grid of the hydrophobic grid membrane filters, having 6 grids per each strain analyzed. The dried filters were read by FTIR microspectroscopy fitted with an attenuated total reflectance probe. Collected spectra were statistically analyzed by a soft independent modeling of class analogy (SIMCA) for pattern recognition. Classification models were developed for Streptococcus thermophilus, Propionibacterium freudenreichii, and Lactobacillus spp. strains. The models showed major discrimination in the spectral region from 1,200 to 900 cm−1 associated with signals from phosphate-containing compounds and various polysaccharides in the cell wall. The developed method allowed for rapid classification of several Swiss cheese starter and nonstarter cultures at the strain level. This information provides a detailed overview of microbiological status, which would enable corrective measures to be taken early in the cheese making process, limiting production of inferior quality cheese and minimizing defects. This method could be an effective tool to identify and monitor activity of cheese and other dairy starter cultures.  相似文献   

11.
发酵剂对牦牛乳硬质干酪成熟过程中生物胺的影响   总被引:1,自引:0,他引:1  
乳酸菌产生物胺的能力具有菌株特异性,因此,为了探究不同种类发酵剂对牦牛乳硬质干酪中生物胺形成的影响,该试验利用高效液相色谱对3种不同发酵剂制作的硬质干酪成熟过程中生物胺进行了测定和分析。结果表明,嗜热和嗜温发酵剂牦牛乳硬质干酪中检测出2-苯乙胺、腐胺、尸胺、组胺和酪胺,混合发酵剂干酪中检测出腐胺、2-苯乙胺、尸胺和酪胺。各生物胺之间呈现正相关性。3种不同发酵剂干酪在1~6个月成熟过程中,其各生物胺整体呈现增加趋势,嗜热、嗜温和混合发酵剂干酪中总生物胺最高含量分别为(448.3±9.6)、(456.8±58.4)、(293±24.5)mg/kg。组胺和酪胺是2种毒性相对高的生物胺,嗜热发酵剂干酪中组胺和嗜温发酵剂干酪中酪胺最高,其最高含量分别为(20.8±7.9)、(92.9±6.7)mg/kg,混合发酵干酪中未检测出组胺,酪胺含量次之,3种不同发酵剂干酪中组胺、酪胺含量均低于推荐安全剂量50 mg/kg和100 mg/kg。这为合理选择发酵剂和控制干酪中生物胺形成提供了依据。  相似文献   

12.
Fortification of cheesemilk with membrane retentates is often practiced by cheesemakers to increase yield. However, the higher casein (CN) content can alter coagulation characteristics, which may affect cheese yield and quality. The objective of this study was to evaluate the effect of using ultrafiltration (UF) retentates that were processed at low temperatures on the properties of Swiss cheese. Because of the faster clotting observed with fortified milks, we also investigated the effects of altering the coagulation conditions by reducing the renneting temperature (from 32.2 to 28.3°C) and allowing a longer renneting time before cutting (i.e., giving an extra 5 min). Milks with elevated total solids (TS; ∼13.4%) were made by blending whole milk retentates (26.5% TS, 7.7% CN, 11.5% fat) obtained by cold (<7°C) UF with part skim milk (11.4% TS, 2.5% CN, 2.6% fat) to obtain milk with CN:fat ratio of approximately 0.87. Control cheeses were made from part-skim milk (11.5% TS, 2.5% CN, 2.8% fat). Three types of UF fortified cheeses were manufactured by altering the renneting temperature and renneting time: high renneting temperature = 32.2°C (UFHT), low renneting temperature = 28.3°C (UFLT), and a low renneting temperature (28.3°C) plus longer cutting time (+5 min compared to UFLT; UFLTL). Cutting times, as selected by a Wisconsin licensed cheesemaker, were approximately 21, 31, 35, and 32 min for UFHT, UFLT, UFLTL, and control milks, respectively. Storage moduli of gels at cutting were lower for the UFHT and UFLT samples compared with UFLTL or control. Yield stress values of gels from the UF-fortified milks were higher than those of control milks, and decreasing the renneting temperature reduced the yield stress values. Increasing the cutting time for the gels made from the UF-fortified milks resulted in an increase in yield stress values. Yield strain values were significantly lower in gels made from control or UFLTL milks compared with gels made from UFHT or UFLT milks. Cheese composition did not differ except for fat content, which was lower in the control compared with the UF-fortified cheeses. No residual lactose or galactose remained in the cheeses after 2 mo of ripening. Fat recoveries were similar in control, UFHT, and UFLTL but lower in UFLT cheeses. Significantly higher N recoveries were obtained in the UF-fortified cheeses compared with control cheese. Because of higher fat and CN contents, cheese yield was significantly higher in UF-fortified cheeses (∼11.0 to 11.2%) compared with control cheese (∼8.5%). A significant reduction was observed in volume of whey produced from cheese made from UF-fortified milk and in these wheys, the protein was a higher proportion of the solids. During ripening, the pH values and 12% trichloroacetic acid-soluble N levels were similar for all cheeses. No differences were observed in the sensory properties of the cheeses. The use of UF retentates improved cheese yield with no significant effect on ripening or sensory quality. The faster coagulation and gel firming can be decreased by altering the renneting conditions.  相似文献   

13.
Lipolysis was evaluated in Urfa cheese made from raw and pasteurized goats’ and cows’ milk with mesophilic or thermophilic cultures. The acid degree values (ADVs) of the cows’ milk cheeses were significantly (P < 0.05) higher until 60 d of storage than that of cheese made from goats’ milk. Total free fatty acid (FFA) contents of goats’ milk cheese were significantly (P < 0.001) lower than that of cows’ milk cheese throughout ripening, whereas goats’ milk cheese flavour was higher (P < 0.05) than cows’ milk cheese. Pasteurization of milk prior to cheese-making has a negative influence, not only on the level of lipolysis throughout ripening, but also on the relative amounts of short chain FFAs and sensory properties of the cheeses (P < 0.001). Cheese produced without starter bacteria underwent significantly (P < 0.05) higher lipolysis than cheeses produced with mesophilic or thermophilic starter bacteria, while cheese made with thermophilic starter culture had similar flavour to cheese made without starter culture.  相似文献   

14.
The effect of adding autochthonous starter cultures isolated from Siahmazgi cheese, on the physicochemical parameters and microbial counts of sucuk was investigated during the ripening period. SPME–GC/MS was used in volatile compound analysis and a trained group of panelists carried out sensory analysis of the final product. After preliminary screening, three strains of Lactobacillus plantarum, which possess desirable technological properties, were used to prepare three starter cultures: LBP7, LBP10 and LBP14. The addition of LBP7 and LBP14 starter cultures had a significant effect (P < 0.05) on lightness, leading to higher L values compared to control sausages during the ripening period. Both LBP7 and LBP14 sausages showed higher counts of lactic acid bacteria, lower growth of Enterobacteriaceae and Gram-positive catalase-positive cocci and greatly lowered the pH value compared to control sausages throughout the ripening process. At the end of the ripening process, lactic acid bacteria counts were affected (P < 0.05) by the addition of starter culture since higher counts were observed in sausages prepared with LBP7 (9.14 log CFU/g) and LBP14 (8.96 log CFU/g) batches. The decrease of water activity during the ripening of sausages was not affected by the various starters. The texture profiles of all sausages were similar except for LBP10, which showed lower hardness and gumminess during ripening. Under the conditions of the study, volatile compounds were mainly from spices, and no marked differences were found among inoculated sausages. However, sensory evaluation revealed that most of the sensory attributes were scored higher for inoculated sausages than for the control ones. Therefore, LBP7 and LBP14 could be promising candidates for inclusion as starter cultures for the manufacture of sucuk.  相似文献   

15.
In Italy, more than 75% of milk is used for cheese making. For this reason, milk composition and coagulation traits and cheese quality represent the most important tools for the economic development of the dairy sector. In particular, cheese quality varies in relation to cheese-making technology and breed of cow. The aim of this study was to investigate the effect of 3 types of milk, originating from Holstein-Friesian (HF), Brown Swiss (BS), and mixed of both breeds, on vat milk characteristics, cheese yield, and quality in 3 different typical Italian cheese-making conditions (Casolet, Vezzena, and Grana Trentino). One hundred forty-four cows (66 HF and 78 BS) were involved, and a total of 24 vats of milk were evaluated. At maturity, 30, 21, and 16 wheels of Casolet, Vezzena, and Grana Trentino cheese were analyzed. Brown Swiss cows yielded 9% less milk per day than HF cows, but milk showed greater contents of protein, casein, titratable acidity, and better rennet coagulation time and curd firmness than HF milk. The chemical composition and cholesterol content of the 3 types of cheese were similar between breeds, whereas the cheese made with BS milk showed greater contents of monounsaturated and polyunsaturated fatty acids. Cheese made with BS milk had greater b* (yellow component) than HF. Cheese yield, recorded at different ripening times, demonstrated that BS milk yielded more cheese than HF. Mixed milk showed values, on average, intermediate to HF and BS milk characteristics, and this trend was confirmed in cheese yield at different ripening times.  相似文献   

16.
The headspace compounds of teleme cheese made from sheep's milk, goats' milk or mixture of sheep's and goats' milk (50:50) were analysed during ripening by static headspace gas chromatography–mass spectrometry. A total of 21 major compounds were identified, including aldehydes (7), alcohols (5), ketones (4), and acids (2). All types of cheeses contained approximately the same volatiles at different concentrations. The total volatile compounds (TVC) increased during ripening. Cheeses made from sheep's milk showed the highest level of TVC, whereas cheeses made from goats' milk showed the lowest one.  相似文献   

17.
The objective of this investigation was to compare the composition and changes in the concentration of volatiles in low‐fat and full‐fat Tulum cheeses during ripening. Tulum cheese was manufactured from low‐ or full‐fat milk using exopolysaccharide (EPS)‐producing or non‐EPS‐producing starter cultures. A total of 82 volatile compounds were identified belonging to the following chemical groups: acids (seven), esters (21), ketones (14), aldehydes (six), alcohols (14) and miscellaneous compounds (20). The relative amounts of acids, alcohols and aldehydes increased in the cheeses made with EPS‐producing cultures during 90 days of ripening. Differences were found in the volatile profile of full‐fat Tulum cheese compared with the low‐fat variant, especially after 90 days of ripening. Exopolysaccharide‐producing cultures changed the volatile profile, and the EPS‐producing cultures including Streptococcus thermophilus + Lactobacillus delbrueckii subsp. bulgaricus + Lactobacillus helveticus (LF‐EPS2) produced cheese with higher levels of methyl ketones and aldehydes than the non‐EPS cultures. In the sensory analysis, full‐fat Tulum cheeses and the cheese produced with the EPS‐producing culture containing Lb. helveticus (LF‐EPS2) were preferred by the expert panel. It was concluded that the use of EPS‐producing starter cultures in the manufacture of low‐fat Tulum cheese had the potential to improve the flavour.  相似文献   

18.
Fiore Sardo (FS) is a traditional Italian raw ewe’s milk cheese carrying a Protected Designation of Origin (PDO). This study investigated the kinetics of FS cheese ripening by physicochemical parameters, microbial counting, and NMR metabolomics using aqueous extracts. Four Fiore Sardo cheeses, manufactured from milk with deliberately added autochthonous lactic acid bacteria (LAB) or commercial starters were studied during a period of 90 days of ripening. Major differences in the metabolic profiles were observed amongst the samples as a function of the adjunct culture utilised. 1H NMR metabolomics in combination with multivariate data analysis was able to classify cheese samples on the basis of their maturation age and the type of added cultures. These findings lay the metabolic basis for the authentication of Fiore Sardo cheese produced in compliance with PDO specifications which allow the use of only native LAB cultures.  相似文献   

19.
Paired wild‐type cultures consisting of a Lactobacillus paracasei subsp. paracasei (three strains) or Pediococcus pentosaceus (one strain) and a Pediococcus inopinatus (five strains) were used as adjunct cultures in the production of Iranian white brined cheese. After 8 weeks of ripening, adjunct‐treated cheeses produced by L. paracasei subsp. paracasei and P. inopinatus received significantly higher scores for flavour/taste, aroma, texture and overall preference than those produced by P. pentosaceus and P. inopinatus as well as the control cheese (P < 0.05). In conclusion, a greater improvement of sensory quality of cheeses was strongly associated with the presence of L. paracasei subsp. paracasei rather than pediococci.  相似文献   

20.
Seventeen strains of mesophilic lactic acid bacteria, isolated from cheese (non-starter lactic acid bacteria, NSLAB) or sourdough, were used individually as adjunct cultures in a Caciotta cheese model system. Adjunct cultures were monitored by randomly amplified polymorphic DNA analysis and their cell counts mainly varied from ca. 9.0 to 8.0 log cfu g−1 throughout 36 days of ripening. Adjunct cultures influenced differently cheese proteolysis. Both NSLAB and sourdough strains caused an extensive secondary proteolysis; however, some NSLAB strains produced the highest concentration of free amino acids. Principal component analysis (PCA) differentiated cheeses manufactured with NSLAB strains Lactobacillus parabuckneri B9FST, Lb. paracasei B61F5, Lb. curvatus 2768 and Lb. rhamnosus ATCC 7469 based on the accumulation of Lys, Glu, Phe, Hist, Asp and Met. Assessment of cheese lipolysis showed that: (i) highest concentrations of free fatty acids (FFA) were found with NSLAB strains Lb. rhamnosus ATCC 7469 and Lb. casei subsp. pseudoplantarum 2742 (ca. 10 500 mg kg−1); (ii) PCA differentiated cheeses manufactured with NSLAB strains Lb. rhamnosus ATCC 7469 and Lb. casei subsp. pseudoplantarum 2742 based on the accumulation of palmitic (C16:0) and linoleic (C18:2) acids, and those with Lb. curvatus 2768 and Lb. parabuckneri B9FST based on the high concentration of short chain FFA; (iii) the cheese made with sourdough strain Lb. sanfranciscensis CB1 had the highest levels of unsaturated FFA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号