首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multiplex polymerase chain reaction (PCR) procedure based on fliCh7 and rfbE genes was developed for the detection of Escherichia coli O157:H7 in raw pork meat and ready-to-eat (RTE) meat products. Two different DNA extraction procedures were evaluated for application on meat products. MasterPure™ DNA Purification kit in combination with immunomagnetic separation was found to be the best method in a meat system. The optimized PCR included an enrichment step in brilliant green bile 2% broth at 37 °C. This method was applied to artificially inoculated meat and RTE meat products with different concentrations of E. coli O157:H7. The results indicate that the PCR assay developed could sensitively and specifically detect E. coli O157:H7 in raw pork meat and RTE meat products in approximately 10 h, including a 6 h enrichment step. Thus, this method could be proposed for screening E. coli O157:H7 in raw pork and RTE meat products.  相似文献   

2.
Multistate outbreaks of Escherichia coli O157:H7 infections through consumption of contaminated foods including produce products have brought a great safety concern. The objectives of this study were to determine the effect of biofilm and quorum sensing production on the attachment of E. coli O157:H7 on food contact surfaces and to evaluate the transfer of the pathogen from the food contact to various food products. E. coli O157:H7 produced maximum levels of AI-2 signals in 12 h of incubation in tested meat, poultry, and produce broths and subsequently formed strong biofilm in 24 h of incubation. In general, E. coli O157:H7 formed stronger biofilm on stainless steel than glass. Furthermore, E. coli O157:H7 that had attached on the surface of stainless steel was able to transfer to meat, poultry, ready-to-eat deli, and produce products. Strong attachment of the transferred pathogen on produce products (cantaloupe, lettuce, carrot, and spinach) was detected (>103 CFU/cm2) even after washing these products with water. Our findings suggest that biofilm formation by E. coli O157:H7 on food contact surfaces can be a concern for efficient control of the pathogen particularly in produce products that require no heating or cooking prior to consumption.  相似文献   

3.
The present study was conducted to investigate the presence of Escherichia coli O157 and O157:H7 strains and to detect the presence of the stx1, stx2, and eaeA genes in isolates derived from 200 samples (100 samples from fresh ground beef and 100 samples from raw meatball). The samples were purchased from the Samsun Province in Turkey, over a period of 1 year. Enrichment-based immunomagnetic separation and multiplex polymerase chain reaction were applied for these analyses. E. coli O157 was detected in five of the 200 (2.5%) samples tested (one isolated from ground beef and four from meatball samples), whereas E. coli O157: H7 was not detected in any sample. During the analysis, eight strains of E. coli O157 were obtained. The genes stx1, stx2, and eaeA were detected in two E. coli O157 isolates obtained from two meatball samples, whereas only the eaeA and the stx2 genes were detected in four E. coli O157 strains that were isolated from one meatball sample. None of the stx1, stx2, and eaeA was detected in the E. coli O157 isolates obtained from the ground beef and the one meatball samples.  相似文献   

4.
A pilot survey for the pathogens Salmonella and Escherichia coli O157:H7, and E. coli biotype 1 was conducted on 100 New Zealand-produced (domestic) pig carcasses and 110 imported pig meat samples over an 8-month period to assess the likelihood of introduction of novel pathogen strains into New Zealand (NZ), and as a guide for development of a domestic pork National Microbiological Database programme. Salmonella was not isolated from domestic pig carcasses or from pig meat imported from Canada and the USA. The prevalence of Salmonella in imported pig meat was 3.6% (95% CI 1.0–9.0) with positive samples detected from Australian pig meat. The prevalence of E. coli O157:H7 on domestic pig carcasses was 1% (95% CI 0.03–5.4) while the overall prevalence of E. coli O157:H7 in imported pig meat was 1.8% (95% CI 0.2–6.4), detected mainly from Australian but not from Canadian or US pork. All except three samples have an E. coli biotype 1 count of <100 CFU cm−2 or g−1, indicating good hygiene quality of domestic and imported pig meat. The results demonstrated that importation of uncooked pig meat is a potential route for the introduction of new clones of Salmonella and E. coli O157:H7 into New Zealand.  相似文献   

5.
This study characterized the types of interactions between Escherichia coli O157:H7 and spinach phylloepiphytic bacteria and identified those that influence persistence of E. coli O157:H7 on edible plants. A total of 1512 phylloepiphytic bacterial isolates were screened for their ability to inhibit or to enhance the growth of E. coli O157:H7 in vitro and on spinach leaf surfaces. Fifteen different genera, the majority belonging to Firmicutes and Enterobacteriaceae, reduced growth rates of E. coli O157:H7 in vitro by either nutrient competition or acid production. Reduced numbers of E. coli O157:H7 were recovered from detached spinach leaves that were co-inoculated with epiphytic isolates belonging to five genera. A 1.8 log reduction in E. coli O157:H7 was achieved when co-inoculated with Erwinina perscinia and 20% cellobiose, a carbon source used by the phylloepiphytes but not E. coli O157:H7. The reduction on leaves was significantly less than reduction measured in vitro. Phylloepiphytic bacteria belonging to eight different genera, increased numbers of E. coli O157:H7 when co-cultured in vitro on spent medium and when co-cultured on detached spinach leaves. The results, showing reduction of E. coli O157:H7 numbers by natural epiphytic bacteria, support the hypothesis that native plant microbiota can be used for bio-control of foodborne pathogens, however, other epiphytes may promote the persistence of enteric pathogens on the phyllosphere.  相似文献   

6.
Shedding of Escherichia coli O157:H7 was monitored monthly over a 1-yr period by collecting pooled fecal pats (FECAL) and manila ropes orally accessed for 4 h (ROPE) from multiple pens of cattle in 5 commercial dairies in southern Alberta, Canada. Using immunomagnetic separation, E. coli O157:H7 was isolated from cows on 4 of the dairies and from 13.5% of FECAL and 1.1% of ROPE samples. Pulsed-field gel electrophoresis of XbaI- and SpeI-digested bacterial DNA of the 65 isolates produced 23 unique restriction endonuclease digestion patterns, although 92% of the isolates belonged to 3 restriction endonuclease digestion pattern clusters sharing a minimum 90% homology. Collection of positive isolates was 15 times more likely from June through September. Across dairies, peak somatic cell count occurred in July, August, September, and November. The likelihood of positive isolates was 2.6 times higher in calves and heifers compared with mature cows. This study indicates that ROPE would be of little value for the detection of E. coli O157:H7 in dairy herds unless oral contact with ROPE could be increased in mature animals. Additionally, mitigation strategies for E. coli O157:H7 should be targeted to the months of July, August, and September and toward immature animals for maximum impact. All farms displayed unique combinations of seasonality of shedding and diversity of E. coli O157:H7 subtypes. The fact that seasonal prevalence of E. coli O157:H7 largely coincided with peak somatic cell count within climatically controlled dairy barns suggests that similar environmental factors may be enhancing fecal shedding E. coli O157:H7 and the incidence of mastitis.  相似文献   

7.
Microbial cross-contamination either at home or production site is one of the major factors of causing contamination of foods and leading to the foodborne illness. The knowledge regarding Escherichia coli O157:H7 surface transfer on ready-to-eat (RTE) deli meat and the slicer used for slicing different RTE products are needed to ensure RTE food safety. The objectives of this study were to investigate and to model the surface cross-contamination of E. coli O157:H7 during slicing operation. A five-strain cocktail of E. coli O157:H7 was inoculated directly onto a slicer's round blade rim area at an initial level of ca. 4, 5, 6, 7 or 8 log CFU/blade (ca. 3, 4, 5, 6 or 7 log CFU/cm2 of the blade edge area), and then the RTE deli meat (ham) was sliced to a thickness of 1–2 mm. For another cross-contamination scenario, a clean blade was initially used to slice ham which was pre-surface-inoculated with E. coli O157:H7 (ca. 4, 5, 6, 7 or 8 log CFU/100 cm2 area), then, followed by slicing un-inoculated ham. Results showed that the developed empirical models were reasonably accurate in describing the transfer trend/pattern of E. coli O157:H7 between the blade and ham slices when the total inoculum level was ≥5 log CFU on the ham or blade. With an initial inoculum level at ≤4 log CFU, the experimental data showed a rather random microbial surface transfer pattern. The models, i.e., a power equation for direct-blade-surface-inoculation, and an exponential equation for ham-surface-inoculation are microbial load and sequential slice index dependent. The surface cross-contamination prediction of E. coli O157:H7 for sliced deli meat (ham) using the developed models were demonstrated. The empirical models may provide a useful tool in developing the RTE meat risk assessment.  相似文献   

8.
Rico Suhalim  Gary J. Burtle 《LWT》2008,41(6):1116-1121
Survival of Escherichia coli O157:H7 in channel catfish (Ictalurus punctatus), pond and holding tank water was investigated. Water from three channel catfish ponds was inoculated with ampicillin/nalidixic acid-resistant E. coli O157:H7 transformed with a plasmid encoding for green fluorescent protein at 105, 106, and 107 CFU/ml. Samples were taken from surface, internal organs, and skin scrape of fish and pond water for E. coli O157:H7 enumeration on brain heart infusion (BHI) agar containing ampicillin and nalidixic acid. To determine the survival of E. coli O157:H7 in catfish holding tank water from two farmers markets, the water was inoculated with 107E. coli O157:H7 CFU/ml. E. coli O157:H7 were detected by direct plating for 33 and 69 d in pond and holding tank water, respectively. A rapid decrease of the pathogen was observed in the first 2 weeks to reach 2 log CFU/ml. When E. coli O157:H7 was not recovered by direct plating, the pathogen was isolated by enrichment in TSB for approximately another 30 d from pond and holding tank water. The populations of E. coli O157:H7 found in the internal organs and skin scrape were 5.5 log and 2.5 log CFU/ml, respectively. E. coli O157:H7 from internal organs and water were recovered for at least 12 d. Results suggest that E. coli O157:H7 can survive in channel catfish pond and holding tank water and channel catfish may become a potential carrier of the pathogen.  相似文献   

9.
Cattle are the main asymptomatic reservoir of Escherichia coli O157:H7 which can cause illness to human. The objectives of the study were to measure the prevalence of E. coli O157:H7 on cattle slaughtered in Amman abattoir, detect virulence factors in the isolates, determine antibacterial resistance of the isolates, and know how the isolates are different or similar when compared to characterized isolates from developed countries.  相似文献   

10.
Work examines the origin of bactericidal activity in mustard flour and explores the relative contribution from starter cultures, E. coli O157:H7 itself and other sources. Bacteria can degrade naturally occurring glucosinolates in mustard and form isothiocyanates with antimicrobial activity. In the present work, 24 starter cultures (mostly from commercial mixtures) were screened for their capacity to decompose the glucosinolate, sinalbin. The most active pair, Pediococcus pentosaceus UM 121P and Staphylococcus carnosus UM 123M, were used together for the production of dry fermented sausage contaminated with E. coli O157:H7 (~ 6.5 log CFU/g). They were compared to industrial starters used previously (P. pentosaceus UM 116P and S. carnosus UM 109M) for their reduction of E. coli O157:H7 viability. Sausage batches containing hot mustard powder (active myrosinase), cold mustard powder (inactivated myrosinase), autoclaved mustard powder (inactivated myrosinase) and no mustard flour (control) were prepared. Interestingly, both pairs of starter cultures yielded similar results. Elimination of E. coli O157:H7 (> 5 log CFU/g) occurred after 31 days in the presence of hot flour and in 38 days when the cold flour was added. Reductions > 5 log CFU/g of the pathogen did not occur (up to 38 days) in the control group. It was found that E. coli O157:H7 itself had a greater effect on sinalbin conversion than either pair of starter cultures, and glucosinolate degradation by the starter cultures was less important in determining E. coli survival. The autoclaved powder caused more rapid bactericidal action against E. coli O157:H7, yielding a > 5 log CFU/g reduction in 18 days. This may have been a result of the formation and/or release of antimicrobial substances by the autoclave treatment. Autoclaved mustard powder could potentially solve an important challenge facing the meat industry as it strives to manufacture safe dry fermented sausages.  相似文献   

11.
Multiplex real-time PCR detection of Escherichia coli O157:H7 is an efficient molecular tool with high sensitivity and specificity for meat safety assurance. The Biocontrol GDS® and DuPont Qualicon BAX®-RT rapid detection systems are two commercial tests based on real-time PCR amplification with potential applications for quantification of specific E. coli O157:H7 gene targets in enriched meat samples. However, there are arguments surrounding the use of these tests to predict pre-enrichment concentrations of E. coli O157:H7, as well as arguments pertaining to the influence of non-viable cells causing false positive results. The present study attempts to illustrate the effects of different bacterial physiologic states and the presence of non-viable cells on the ability of these systems to accurately measure contamination levels of E. coli O157:H7 in ground beef. While the PCR threshold cycle (CT) values of these assays showed a direct correlation with the number of bacteria present in pure cultures, this was not the case for ground beef samples spiked with various levels of injured or healthy cells. Furthermore, comparison of post-enrichment cell densities of bacteria did not correlate with injured or healthy cell numbers inoculated before enrichment process. Ground beef samples spiked with injured or healthy cells at different doses could not be distinguished by CT values from either assay. In addition, the contribution of nonviable cells in generating positive real-time PCR signals was investigated using both assays on pre-enriched and post-enriched beef samples, but only if inoculated at levels of 106 cells/sample or higher, which are levels not typically seen in ground beef.  相似文献   

12.
《Journal of dairy science》2022,105(8):6527-6535
This study was conducted to assess the survival of 2 wild Shiga toxin-producing Escherichia coli strains (one serotype O157:H7 and one non-O157:H7) in ewe milk stored at different conditions and to examine the fate of the O157 strain during the manufacture and ripening of a Spanish sheep hard variety of raw milk cheese (Zamorano). The strains were selected among a population of 50 isolates, which we obtained from ewe milk, because of their high resistance to 0.3% lactic acid. Both strains were inoculated (approximately 2 log10 cfu/mL) in raw and heat-treated (low-temperature holding, LTH; 63°C/30 min) ewe milk and stored for 5 d at 6, 8, and 10°C and also according to a simulation approach for assessing the effects of failures in the cold chain. The minimum growth temperature for the O157:H7 strain in LTH and raw ewe milk was 8°C. For the non-O157:H7 strain, the lowest temperature showing bacterial growth in LTH ewe milk was 6°C, but it did not grow at any of the tested conditions in raw milk. It appears that the O157 strain was more susceptible to cold stress but was likely a better competitor than the non-O157 strain against the milk autochthonous microbiota. For manufacture of Zamorano cheese, raw milk was inoculated with approximately 3 log10 cfu/mL, and after 2 mo of ripening at 10 to 12°C, the cheeses showed the expected general characteristics for this variety. The O157:H7 strain increased 0.9 log10 cfu/g after whey drainage and during ripening and storage decreased by 2.9 log10 cfu/g. Nevertheless, its detectable level (estimated at 6.2 cfu/g) after 2 mo of ripening suggests that Zamorano cheese manufactured from raw ewe milk contaminated with E. coli O157:H7 could represent a public health concern.  相似文献   

13.
The antibacterial activity of the essential oils (EO) of oregano and thyme added at doses of 0.1 or 0.2 and 0.1 ml/100 g, respectively, to feta cheese inoculated with Escherichia coli O157:H7 or Listeria monocytogenes was investigated during cheese storage under modified atmosphere packaging (MAP) of 50% CO2 and 50% N2 at 4 °C. Compositional analysis showed that the predominant phenols were carvacrol and thymol for both EO. In control feta inoculated with the pathogens and stored under MAP, results showed that E. coli O157:H7 and L. monocytogenes strains survived up to 32 and 28 days of storage. However, in feta cheese treated with oregano EO at the dose of 0.1 ml/100 g, E. coli O157:H7 or L. monocytogenes survived up to 22 and 18 days, respectively, whereas at the dose of 0.2 ml/100 g up to16 or 14 days, respectively. Feta cheese treated with thyme EO at 0.1 ml/100 g showed populations of E. coli O157:H7 or L. monocytogenes not significantly different (P > 0.05) than those of feta cheese treated with oregano at 0.1 ml/100 g. Although both essential oils exhibited equal antibacterial activity against both pathogens, the populations of L. monocytogenes decreased faster (P < 0.05) than those of E. coli O157:H7 during the refrigerated storage, indicating a stronger antibacterial activity of both essential oils against the former pathogen.  相似文献   

14.
We investigated the potential use of biofilm formed by a competitive-exclusion (CE) microorganism to inactivate Escherichia coli O157:H7 on a stainless steel surface. Five microorganisms showing inhibitory activities against E. coli O157:H7 were isolated from vegetable seeds and sprouts. The microorganism with the greatest antimicrobial activity was identified as Paenibacillus polymyxa (strain T5). In tryptic soy broth (TSB), strain T5 reached a higher population at 25 °C than at 12 or 37 °C without losing inhibitory activity against E. coli O157:H7. When P. polymyxa (6 log CFU/mL) was co-cultured with E. coli O157:H7 (2, 3, 4, or 5 log CFU/mL) in TSB at 25 °C, the number of E. coli O157:H7 decreased significantly within 24 h. P. polymyxa formed a biofilm on stainless steel coupons (SSCs) in TSB at 25 °C within 24 h, and cells in biofilms, compared to attached cells without biofilm formation, showed significantly increased resistance to a dry environment (43% relative humidity [RH]). With the exception of an inoculum of 4 log CFU/coupon at 100% RH, upon exposure to biofilm formed by P. polymyxa on SSCs, populations of E. coli O157:H7 (2, 4, or 6 log CFU/coupon) were significantly reduced within 48 h. Most notably, when E. coli O157:H7 at 2 log CFU/coupon was applied to SSCs on which P. polymyxa biofilm had formed, it was inactivated within 1 h, regardless of RH. These results will be useful when developing strategies using biofilms produced by competitive exclusion microorganisms to inactivate foodborne pathogens in food processing environments.  相似文献   

15.
The effect of trans-cinnamaldehyde (TC) on the inactivation of Escherichia coli O157:H7 in undercooked ground beef patties was investigated. A five-strain mixture of E. coli O157:H7 was inoculated into ground beef (7.0 log CFU/g), followed by addition of TC (0, 0.15, and 0.3%). The meat was formed into patties and stored at 4 °C for 5 days or at −18 °C for 7 days. The patties were cooked to an internal temperature of 60 or 65 °C, and E. coli O157:H7 was enumerated. The numbers of E. coli O157:H7 did not decline during storage of patties. However, cooking of patties containing TC significantly reduced (P < 0.05) E. coli O157:H7 counts, by >5.0 log CFU/g, relative to the reduction in controls cooked to the same temperatures. The D-values at 60 and 65 °C of E. coli O157:H7 in TC-treated patties (1.85 and 0.08 min, respectively) were significantly lower (P < 0.05) than the corresponding D-values for the organism in control patties (2.70 and 0.29 min, respectively). TC-treated patties were more color stable and showed significantly lower lipid oxidation (P < 0.05) than control samples. TC enhanced the heat sensitivity of E. coli O157:H7 and could potentially be used as an antimicrobial for ensuring pathogen inactivation in undercooked patties. However detailed sensory studies will be necessary to determine the acceptability to consumers of TC in ground beef patties.  相似文献   

16.
The efficacy of bacteriophages e11/2 and e4/1c as potential biocontrol agents for Escherichia coli O157:H7 in food applications was assessed under conditions relevant to the food chain environment. The stability of each phage was determined following exposure to varying environmental conditions (pH, temperature, water activity, and sodium chloride) and the ability of each phage to infect and reduce E. coli O157:H7 numbers under selected conditions was also examined. Both e11/2 and e4/1c significantly (p < 0.05) reduced numbers of E. coli O157:H7 when exposed to pH values ranging from pH > 4 to pH 9, temperatures from 4 °C to 37 °C, water activity values of 0.87 or 0.91 to 1.00 and NaCl concentrations of 1% to 2.5%. Subsequently, a cocktail of both phages was used (e11/2 and e4/1c) to assess reduction of E. coli O157:H7 on cattle hide pieces. This involved inoculating pieces of hide (20 × 20 cm) with E. coli O157:H7 (approximately 106 cfu/cm2) which were subsequently treated with either a suspension of a phage cocktail, consisting of e11/2 and e4/1c (multiplicity of infection of 1000 and 10,000, respectively) or water or not treated. Two different investigations were carried out; immediately or 1 h after treatment application was performed in different experiments. Swab samples taken immediately after phage treatment showed no significant (p > 0.05) reduction of E. coli O157:H7 numbers compared to the water treated or untreated samples. However, an extended exposure time of 1 h following phage application revealed a significant reduction (p < 0.05) (1.5 log10 cfu/cm2 reduction) in E. coli O157:H7 numbers compared to the numbers recovered on samples treated with water only. These findings demonstrate the potential use of e11/2 and e4/1c phages as a biocontrol agent for E. coli O157:H7 within various stages of the food chain, including on cattle hide.  相似文献   

17.
Acid resistance of Escherichia coli O157:H7 strains UT 10 and UT 15 were determined in traditional Amasi fermented for 3 days at ambient temperature (ca 30 °C) and commercial Amasi fermented at 30 °C for 24 h and stored at 7 °C for 2 days. Escherichia coli O157:H7 counts in commercial Amasi were detected at 2.7 log10 cfu/ml after 3 days while those in traditional Amasi could not be detected after the same period. There was no significant difference (p ? 0.05) in the survival of acid adapted (AA) and non-adapted (NA) E. coli O157:H7 in traditional Amasi, while in commercial Amasi, the NA strain survived significantly (p ? 0.05) better than its AA counterpart. Regardless of prior adaptation to acid, E. coli O157:H7 can survive during fermentation and storage of fermented goat milk Amasi. Also, the fermentation time, pH and storage temperature affects the survival of E. coli O157:H7 in the fermented milk.  相似文献   

18.
Chlorine dioxide (ClO2), ozone, and thyme essential oil has been found to be effective in reducing pathogens, including Escherichia coli O157:H7, on selected produce. The efficacy of these sanitizers was evaluated, alone or through their sequential washing to achieve a 3 or more log reduction of mixed strains of E. coli O157:H7 on shredded lettuce and baby carrots. Samples sprinkle inoculated with mixed strains of E. coli O157:H7 were air-dried for 1 h at 22±2°C in a biosafety cabinet, stored at 4°C for 24 h, and then treated with different concentrations of disinfectants and exposure time. Sterile deionized water washing resulted in approximately 1log reduction ofE. coli O157:H7 after 10 min washing of lettuce and baby carrots. Gaseous treatments resulted in higher log reductions in comparison to aqueous washing. However, decolorization of lettuce leaves was observed during long exposure time. A logarithmic reduction of 1.48-1.97log10 cfu/g was obtained using aqueous ClO2 (10.0 mg/L for 10 min) ozonated water (9.7 mg/L for 10 min) or thyme oil suspension (1.0 mL/L for 5 min) on lettuce and baby carrots. Of the three sequential washing treatments used in this study, thyme oil followed by aqueous ClO2/ozonated water, or ozonated water/aqueous ClO2 were significantly (P<0.05) more effective in reducing E. coli O157:H7 (3.75 and 3.99log, and 3.83 and 4.34 log reduction) on lettuce and baby carrots, respectively. The results obtained from this study indicate that sequential washing treatments could achieve 3-4log reduction of E. coli O157:H7 on shredded lettuce and baby carrots.  相似文献   

19.
The objective of the present study was to obtain data about cooking time and temperature of kiymali pide in the restaurants and to investigate thermal inactivation of E. coli O157:H7 during experimental kiymali pide making. A field study was conducted in randomly selected 23 of 87 pide restaurants. Processing parameters including oven temperature, cooking period and post-cooking temperature were determined. Kiymali pide samples were prepared using ground beef filling experimentally inoculated with E. coli O157:H7 (7.6 log10 CFU/g). Pide samples were cooked at a conventional oven at 180 °C for 180, 240, 270, 300 and 330 s. Results of the current study suggest that cooking kiymali pide at 180 °C for at least 330 s (5.5 min) may provide sufficient food safety assurance (≥ 6 log10 CFU/g) for E. coli O157:H7.  相似文献   

20.
Outbreaks of food-borne pathogens, such as Escherichia coli O157:H7 and Salmonella, continue to draw public attention to food safety. Several reports have demonstrated the efficacy of using natural ingredients to control the growth of food-borne pathogens. The objective of this study was to investigate antimicrobial effects of lactic acid and copper, alone and in combination, on the survival and growth of Salmonella spp. and E. coli O157:H7 in laboratory medium and carrot juice. Survival and growth of 38 Salmonella spp. and six E. coli O157:H7 strains were compared when grown in brain heart infusion (BHI) broth and carrot juice under conditions including either lactic acid (0.2%) alone, copper sulfate (50 ppm) alone or the combination of the two. The growth inhibition was negligible when copper sulfate was added to BHI broth and carrot juice. Lactic acid (0.2%) retarded the growth of bacterial strains. However, the growth of bacterial strains was significantly inhibited when both lactic acid and copper were in BHI broth and carrot juice within the time frame of this study. These findings indicated that lactic acid, in combination with copper sulfate, could be used to inhibit the growth of pathogens. Natural ingredients, such as lactic acid and low dose of copper ions, can be used to improve the safety of food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号