首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little information is available regarding the fate of Listeria monocytogenes during freezing, thawing and home storage of frankfurters even though recent surveys show that consumers regularly store unopened packages in home freezers. This study examined the effects of antimicrobials, refrigerated storage, freezing, thawing method, and post-thawing storage (7 °C) on L. monocytogenes on frankfurters. Inoculated (2.1 log CFU/cm2) frankfurters formulated without (control) or with antimicrobials (1.5% potassium lactate plus 0.1% sodium diacetate) were vacuum-packaged, stored at 4 °C for 6 or 30 d and then frozen (−15 °C) for 10, 30, or 50 d. Packages were thawed under refrigeration (7 °C, 24 h), on a countertop (23 ± 2 °C, 8 h), or in a microwave oven (2450 MHz, 1100 watts, 220 s followed by 120 s holding), and then stored aerobically (7 °C) for 14 d. Bacterial populations were enumerated on PALCAM agar and tryptic soy agar plus 0.6% yeast extract. Antimicrobials completely inhibited (p < 0.05) growth of L. monocytogenes at 4 °C for 30 d under vacuum-packaged conditions, and during post-thawing aerobic storage at 7 °C for 14 d. Different intervals between inoculation and freezing (6 or 30 d) resulted in different pathogen levels on control frankfurters (2.1 or 3.9 log CFU/cm2, respectively), while freezing reduced counts by <1.0 log CFU/cm2. Thawing treatments had little effect on L. monocytogenes populations (<0.5 log CFU/cm2), and post-thawing fate of L. monocytogenes was not influenced by freezing or by thawing method. Pathogen counts on control samples increased by 1.5 log CFU/cm2 at d-7 of aerobic storage, and reached 5.6 log CFU/cm2 at d-14. As indicated by these results, consumers should freeze frankfurters immediately after purchase, and discard frankfurters formulated without antimicrobials within 3 d of thawing and/or opening.  相似文献   

2.
The objective of this study was to evaluate the effectiveness of oregano oil on four organic leafy greens (Iceberg and Romaine lettuces and mature and baby spinaches) inoculated with Salmonella Newport as a function of treatment exposure times as well as storage temperatures. Leaf samples were washed, dip inoculated with S. Newport (6-log CFU/ml) and dried. Oregano oil was prepared at 0.1, 0.3, and 0.5% concentrations in sterile phosphate buffered saline (PBS). Inoculated leaves were immersed in the treatment solution for 1 or 2 min, and individually incubated at 4 or 8 °C. Samples were taken at day 0, 1, and 3 for enumeration of survivors. The results showed that oregano oil was effective against S. Newport at all concentrations. S. Newport showed reductions from the PBS control of 0.7–4.8 log CFU/g (Romaine lettuce), 0.8–4.8 log CFU/g (Iceberg lettuce), 0.8–4.9 log CFU/g (mature spinach), and 0.5–4.7 log CFU/g (baby spinach), respectively. The antibacterial activity also increased with exposure time. Leaf samples treated for 2 min generally showed greater reductions (by 1.4–3.2 log CFU/g), than those samples treated for 1 min; however, there was minimal difference in antimicrobial activity among samples stored under refrigeration and abuse temperatures. This study demonstrates the potential of oregano oil to inactivate S. Newport on organic leafy greens.  相似文献   

3.
Viability of Listeriamonocytogenes was monitored on frankfurters formulated with or without potassium lactate and sodium diacetate at a ratio of ca. 7:1 and treated with lauric arginate (LAE; 22 or 44 ppm) using the Sprayed Lethality in Container (SLIC®) delivery method. Without antimicrobials, pathogen numbers remained relatively constant at ca. 3.3 log CFU/package for ca. 30 d, but then increased to ca. 8.4 log CFU/package over 120 d. Regardless of whether or not lactate and diacetate were included, when treated with LAE, pathogen numbers decreased from ca. 3.3 log CFU/package to ca. 1.5 log CFU/package within 2 h, but then increased to 7.3 and 6.7 log CFU/package, respectively, after 120 d. When frankfurters were formulated with lactate and diacetate and treated with LAE, pathogen numbers decreased by ca. 2.0 log CFU/package within 2 h and remained relatively unchanged over the 120 d. These data confirm that LAE provides an initial lethality towards L. monocytogenes and when used in combination with reduced levels/ratio of lactate and diacetate as an ingredient for frankfurters provides inhibition throughout shelf life.  相似文献   

4.
Illnesses from Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella have been associated with the consumption of numerous produce items. Little is known about the effect of consumer handling practices on the fate of these pathogens on celery. The objective of this study was to determine pathogen behavior at different temperatures under different storage conditions. Commercial fresh-cut celery was inoculated at ca. 3 log CFU/g onto either freshly cut or outer uncut surfaces and stored in either sealed polyethylene bags or closed containers. Samples were enumerated following storage for 0, 1, 3, 5, and 7 days when held at 4 °C or 12 °C, and after 0, 8, and 17 h, and 1, and 2 days when held at 22 °C. At 4 °C, all populations declined by 0.5–1.0 log CFU/g over 7 days. At 12 °C, E. coli O157:H7 and Salmonella populations did not change, while L. monocytogenes populations increased by ca. 0.5 log CFU/g over 7 days. At 22 °C, E. coli O157:H7, Salmonella, and L. monocytogenes populations increased by ca. 1, 2, or 0.3 log CFU/g, respectively, with the majority of growth occurring during the first 17 h. On occasion, populations on cut surfaces were significantly higher than those on uncut surfaces. Results indicate that populations are reduced under refrigeration, but survive and may grow at elevated temperatures.  相似文献   

5.
The objectives of the present work were to assess the use of moderate doses of gamma irradiation (2 to 5 kGy) and to reduce the risk of pathogen presence without altering the quality attributes of bovine trimmings and of patties made of irradiated trimmings. Microbiological indicators (coliforms, Pseudomonas spp and mesophilic aerobic counts), physicochemical indicators (pH, color and tiobarbituric acid) and sensory changes were evaluated during storage. 5 kGy irradiation doses slightly increased off flavors in patties. Two pathogenic markers (Listeria monocytogenes and Escherichia coli O157:H7) were inoculated at high or low loads to trimming samples which were subsequently irradiated and lethality curves were obtained. Provided that using irradiation doses ≤ 2.5 kGy are used, reductions of 2 log CFU/g of L. monocytogenes and 5 log CFU/g of E. coli O157:H7 are expected. It seems reasonable to suppose that irradiation can be successfully employed to improve the safety of frozen trimmings when initial pathogenic bacteria burdens are not extremely high.  相似文献   

6.
United States regulations require ready-to-eat meat and poultry processors to control Listeria monocytogenes using interventions which may include antimicrobials that reduce post-processing contamination by at least 1 log-cycle; if the treatment achieves ≥2 log reductions, the plant is subject to less frequent microbial testing. Lactic acid (LA) may be useful as a post-lethality intervention and its antimicrobial properties may increase with temperature of application. The aim of this study was to evaluate the effect of LA solution concentration and temperature on L. monocytogenes counts of inoculated frankfurters and to identify parameters (concentration, temperature, and time) that achieve 1 and 2 log-unit immediate reductions. Frankfurters were surface-inoculated with a 10-strain mixture of L. monocytogenes (4.4 ± 0.1 log CFU/cm2) and then immersed in distilled water or LA solutions (0–3%) of 4, 25, 40, or 55 °C for 0–120 s. A regression equation for L. monocytogenes reduction included significant (P < 0.05) effects by the terms of concentration, time, temperature, and the interaction of concentration and temperature; other tested parameters (other interactions, quadratic and cubic terms), within the experimental range examined, did not affect (P ≥ 0.05) the extent of reduction. Results indicated that the effectiveness of LA against L. monocytogenes, in addition to concentration, increased with solution temperature (in the range of 0.6–2.8 log CFU/cm2). The developed equation may allow processors to vary conditions of treatment with LA to achieve a 1 or 2 log-unit reduction of the pathogen and comply with United States regulations.  相似文献   

7.
Due to regulations for natural and organic processed meats, sodium nitrite and many antimicrobials cannot be used. Therefore, natural and organic processed meats are more susceptible to pathogenic bacterial growth, and natural alternatives to chemical preservatives are needed. Inhibition of Listeria monocytogenes, and quality characteristics of frankfurters manufactured with 3% cranberry powder, or with 1% or 2% cranberry powder each with either cherry powder (0.6%), lime powder (60 mg/kg), or a blend of cherry, lime and vinegar (1.4%) were investigated. Cranberry powder at 3% significantly reduced L. monocytogenes growth by 5.3 log CFU/g compared to the uncured co006Etrol (P < 0.05). However, cranberry addition over 1% also resulted in significant product pH decline and negatively impacted the color, texture and sensory attributes of the frankfurters.  相似文献   

8.
Rahman SM  Jin YG  Oh DH 《Food microbiology》2011,28(3):484-491
The objective of this study was to determine the synergistic effect of alkaline electrolyzed water and citric acid with mild heat against background and pathogenic microorganisms on carrots. Shredded carrots were inoculated with approximately 6-7 log CFU/g of Escherichia coli O157:H7 (932, and 933) and Listeria monocytogenes (ATCC 19116, and 19111) and then dip treated with alkaline electrolyzed water (AlEW), acidic electrolyzed water (AcEW), 100 ppm sodium hypochlorite (NaOCl), deionized water (DaIW), or 1% citric acid (CA) alone or with combinations of AlEW and 1% CA (AlEW + CA). The populations of spoilage bacteria on the carrots were investigated after various exposure times (1, 3, and 5 min) and treatment at different dipping temperatures (1, 20, 40, and 50 °C) and then optimal condition (3 min at 50 °C) was applied against foodborne pathogens on the carrots. When compared to the untreated control, treatment AcEW most effectively reduced the numbers of total bacteria, yeast and fungi, followed by AlEW and 100 ppm NaOCl. Exposure to all treatments for 3 min significantly reduced the numbers of total bacteria, yeast and fungi on the carrots. As the dipping temperature increased from 1 °C to 50 °C, the reductions of total bacteria, yeast and fungi increased significantly from 0.22 to 2.67 log CFU/g during the wash treatment (p ≤ 0.05). The combined 1% citric acid and AlEW treatment at 50 °C showed a reduction of the total bacterial count and the yeast and fungi of around 3.7 log CFU/g, as well as effective reduction of L. monocytogenes (3.97 log CFU/g), and E. Coli O157:H7 (4 log CFU/g). Combinations of alkaline electrolyzed water and citric acid better maintained the sensory and microbial quality of the fresh-cut carrots and enhanced the overall shelf-life of the produce.  相似文献   

9.
The objective of this study was to evaluate anti‐listerial efficacy of salts of organic acids, and their impact on the quality of frankfurters. Beef frankfurters were manufactured by incorporating organic acids in 5 different combinations: (1) control (no marinade addition; C); (2) sodium lactate (2% wt/wt; SL); (3) potassium lactate (2% wt/wt; PL); (4) sodium citrate (0.75% wt/wt; SC); and (5) sodium lactate (2% wt/wt)/sodium diacetate (0.25% wt/wt; SL/SD). Cooked frankfurters were inoculated with streptomycin‐resistant (1500 μg/mL) L. monocytogenes (7 log10 CFU/frank). Inoculated and noninoculated frankfurters were vacuum packaged and stored at 4 °C. Samples were taken weekly up to 10 wk for estimation of L. monocytogenes as well as aerobic plate count (APC) and psychrotrophs (PSY), respectively. Total of 2 independent trials of the entire experiment were conducted. Noninoculated beef frankfurters were evaluated weekly by untrained sensory panelists for 7 wk. SL, PL, and SC treatments did not (P > 0.05) adversely affect consumer acceptability through 8 wk although, SL/SD treatment was significantly (P ≤ 0.05) less preferred across all sensory attributes. SL/SD treatment negatively affected product quality, but was able to control APC, PSY, and L. monocytogenes levels. SC performed similar to the control throughout the 8, 9, and 10 wk storage periods, providing no benefit for inhibiting L. monocytogenes (increasing from 7 logs CFU/frank to 10 logs CFU/frank throughout storage) or extending shelf life of the beef frankfurters. In conclusion, 2% SL and PL, and 2% SL/0.25% SD may be effective L. monocytogenes inhibitors (maintaining inoculation levels of 7 logs CFU/frank during storage), but changes in SL/SD treatment formulation should be studied to improve product quality.  相似文献   

10.
The bactericidal activity of lactoferrin (LF), amidated lactoferrin (AMILF), pepsin digested lactoferrin (PDLF), and its activated (ALF) commercial form, against six strains of three gram-positive bacterial species was investigated. Listeria monocytogenes was most sensitive in vitro, Staphylococcus aureus showed a moderate resistance, and Enterococus faecalis was highly resistant to antimicrobials. When chicken breast fillets were inoculated with L. monocytogenes CECT5725 and treated with antimicrobials, reductions were below 0.5 log CFU/ml in all cases. In combination with high pressure (HHP) treatment at 400 MPa for 10 min, antimicrobials showed a slight additional bactericidal effect, always below 1 log CFU/g. Incorporation of antimicrobials 18 h before or 1 h after HHP treatment generally yielded better results than incorporation 1 h before HHP treatment, although reductions remained below 1.5 log CFU/g in all cases. LF and its derivatives showed a limited potential for pathogen control in meat.  相似文献   

11.
In this paper, a new encapsulation carrier was applied in order to improve the survival of Lactobacillus bulgaricus (L. bulgaricus). L. bulgaricus was encapsulated in alginate–milk microspheres prepared by extrusion method. Around 100% encapsulation yield was achieved. The tolerance of encapsulated L. bulgaricus to adverse environments such as low pH (pH 2.0 and 2.5), high concentration of bile salt (1.0% and 2.0%) and long time storage (1 month), was investigated. Release characteristic of encapsulated L. bulgaricus in Simulated Intestine Fluid (SIF) was also studied. The results showed that encapsulation could improve the tolerance of L. bulgaricus to adverse environments. The viability of encapsulated L. bulgaricus did not change after 120 min incubation in Simulated Gastric Fluid (SGF) pH 2.5. The viability of encapsulated L. bulgaricus could be kept more than 8 log CFU/g after 120 min incubation in SGF pH 2.0. The viability of encapsulated L. bulgaricus in 1% bile salt solution was reduced from 9.98 log CFU/g microspheres to 9.24 and 8.48 log CFU/g microspheres after 1 and 2 h incubation, respectively. Around 1.3 and 2.1 log CFU/g microspheres were reduced after 1 and 2 h exposure in 2% bile salt solution, respectively. Full viability of encapsulated L. bulgaricus could be preserved after 1 month’s storage at 4 °C. L. bulgaricus encapsulated in alginate–milk microspheres could be completely released in 1 h. These studies demonstrated encapsulation of L. bulgaricus in alginate–milk microspheres is an effective protection technique against extreme simulated gastrointestinal environment.  相似文献   

12.
We studied the ability of Lactobacillus pentosus 39, a BLS (Bacteriocin-like substance)-producing strain, to control the growth of Aeromonas hydrophila ATCC 14715 and Listeria monocytogenes ATCC 19117 artificially added to fresh salmon fillets at refrigeration temperatures and under simulated cold-chain break conditions.At refrigeration temperatures, Lb. pentosus 39 protective culture and its putative bacteriocin significantly reduced A. hydrophila counts compared with the control (2.1 and 1.4 log CFU/g reductions, respectively). Similar behaviour was observed for L. monocytogenes (3.6 and 1.3 log CFU/g reductions, respectively).Under simulated cold-chain break conditions, an increase in temperature (30°C for 12h) produced an evident increase in the development of A. hydrophila, L. monocytogenes, but also of Lb. pentosus 39, with a consequent increase in BLS production. This condition resulted in a greater reduction of both pathogens compared with samples stored at 4°C throughout the experiment (2.8 log CFU/g reduction for A. hydrophila, 5.8 log CFU/g reduction for L. monocytogenes). In samples treated with the putative bacteriocin alone, a less marked decrease was observed.Our study demonstrates the capability of Lb. pentosus 39 to control the growth of psychrotrophic bacteria in an experimental seafood model system. A similar biopreservation technology could provide more prolonged shelf-life during storage of ready-to-eat seafood, ensuring safety, even under extreme conditions.  相似文献   

13.
《Meat science》2013,93(4):533-537
Contamination by Listeria monocytogenes has been a constant public health threat for the ready-to-eat (RTE) meat industry due to the potential for high mortalities from listeriosis. Lactic acid bacteria (LAB) have shown protective action against various pathogenic bacteria. The aim of this study was to evaluate the antilisterial activity of a combination of three LAB strains (Lactiguard®) on L. monocytogenes. The combination of the LAB was inhibitory to L. monocytogenes inoculated onto frankfurters not containing lactate/diacetate after 8 weeks of refrigerated storage (0.6 log reduction compared to L. monocytogenes only control), and when a cell free extract (CFS) of the LAB was added with LAB even more inhibition was obtained (1.2 log reduction compared with L. monocytogenes only). In frankfurters containing lactate/diacetate the LAB and the LAB plus CFS were more effective in reducing growth of L. monocytogenes after 8 weeks of refrigerated storage (2 and 3.3 log reductions respectively).  相似文献   

14.
Contamination by Listeria monocytogenes has been a constant public health threat for the ready-to-eat (RTE) meat industry due to the potential for high mortalities from listeriosis. Lactic acid bacteria (LAB) have shown protective action against various pathogenic bacteria. The aim of this study was to evaluate the antilisterial activity of a combination of three LAB strains (Lactiguard®) on L. monocytogenes. The combination of the LAB was inhibitory to L. monocytogenes inoculated onto frankfurters not containing lactate/diacetate after 8 weeks of refrigerated storage (0.6 log reduction compared to L. monocytogenes only control), and when a cell free extract (CFS) of the LAB was added with LAB even more inhibition was obtained (1.2 log reduction compared with L. monocytogenes only). In frankfurters containing lactate/diacetate the LAB and the LAB plus CFS were more effective in reducing growth of L. monocytogenes after 8 weeks of refrigerated storage (2 and 3.3 log reductions respectively).  相似文献   

15.
The efficiency of food preservation systems is determined by the technologies that are combined, the intrinsic properties of the food products and the target microorganisms. In the present study, the bacteriocins nisin, enterocins A and B and sakacin K were applied to cooked and dry cured ham spiked with Listeria monocytogenes, Salmonella enterica and Staphylococcus aureus and submitted to a high pressure treatment of 600 MPa. Before pressurization nisin produced significant reductions to the counts of L. monocytogenes and S. aureus, especially in dry cured ham. After the pressurization, Salmonella and L. monocytogenes were not detected in 25 g of both cooked and dry cured ham and remained at this level during the entire storage (57 days at 4 °C + 63 days at 15 °C). S. aureus levels, in contrast, only decreased below the detection limit (1 log CFU/g) in the nisin batches. Afterward, when storage was performed at an abusive temperature, the ability of S. aureus to grow was dependant on the bacteriocin applied and the kind of meat product. Thus, at the end of storage, while S. aureus counts were <1 log CFU/g in all dry cured ham batches, only nisin could inhibit its growth in cooked ham.  相似文献   

16.
This study aimed to assess the efficacy of chitosan from Mucor rouxii UCP 064 in inhibiting Listeria monocytogenes in bovine meat pâté at 4 °C. The influence of the chitosan addition on sensory aspects of the product was also evaluated. The addition of chitosan from M. rouxii at 5 mg/g to bovine meat pâté decreased the counts of L. monocytogenes from approximately 7 to 3 log cfu/g after 6 days of storage at 4 °C. In pâté without chitosan the counts were over 7 log cfu/g already after two days of storage. Sensory evaluation suggested that addition of chitosan in pâté would be acceptable to consumers, although some negative influence on flavor and taste was found. From these results, chitosan from fungi could be considered a possible alternative compound to control L. monocytogenes in ready-to-eat meat products.  相似文献   

17.
The objective of this study was to evaluate the efficacy of atmospheric pressure plasma (APP), which is capable of operating at atmospheric pressure in air, in sliced cheese and ham inoculated by 3-strain cocktail of Listeria monocytogenes (ATCC 19114, 19115, and 19111, LMC). The process parameters considered were input power (75, 100, 125, and 150 W) and plasma exposure time (60, 90, and 120 s). Microbial log reduction increased with increases of input power and plasma exposure time. After 120 s APP treatments at 75, 100, and 125 W, the viable cells of LMC were reduced by 1.70, 2.78, and 5.82 log in sliced cheese, respectively. More than 8 log reductions can be achieved in 120 s at 150 W. In contrast, reductions after 120 s ranged from 0.25 to 1.73 log CFU/g in sliced ham. Calculated D values, the exposure time required to inactivate 90% of a population, from the survival curves of 75, 100, 125, and 150 W of APP treatments were 71.43, 62.50, 19.65, and 17.27 s for LMC in sliced cheese, respectively, and those in sliced ham were 476.19, 87.72, 70.92, and 63.69 s. No viable cells were detected at 125 and 150 W of APP treatment in sliced cheese, irrespective of plasma exposure time, after 1 week at a detection limit of 101 CFU/g. These results indicate that the inactivation effects of APP on L. monocytogenes are strongly dependent on the type of food.  相似文献   

18.
The objective of this study was to determine the effect the source of added nitrite and high hydrostatic pressure (HHP) had on the growth of Listeria monocytogenes on ready-to-eat (RTE) sliced ham. Use of 600 MPa HHP for 3 min resulted in an immediate 3.9–4.3 log CFU/g reduction in L. monocytogenes numbers, while use of 400 MPa HHP (3 min) provided less than 1 log CFU/g reduction. With the 600 MPa HHP treatment, sliced ham with a conventional concentration of sodium nitrite (200 ppm) was not different in L. monocytogenes growth from use with 50 or 100 ppm of sodium nitrite in pre-converted celery powder. Instrumental color values as well as residual nitrite and residual nitrate concentrations for cured (sodium nitrite and nitrite from celery powder) and uncured ham formulations are discussed.  相似文献   

19.
The objectives of this study were to examine and model the probability of growth of Listeria monocytogenes in cooked salmon containing salt and smoke (phenol) compound and stored at various temperatures. A growth probability model was developed, and the model was compared to a model developed from tryptic soy broth (TSB) to assess the possibility of using TSB as a substitute for salmon. A 6-strain mixture of L. monocytogenes was inoculated into minced cooked salmon and TSB containing 0–10% NaCl and 0–34 ppm phenol to levels of 102–3 cfu/g, and the samples were vacuum-packed and stored at 0-–25 °C for up to 42 days. A total 32 treatments, each with 16 samples, selected by central composite designs were tested. A logistic regression was used to model the probability of growth of L. monocytogenes as a function of concentrations of salt and phenol, and storage temperature. Resulted models showed that the probabilities of growth of L. monocytogenes in both salmon and TSB decreased when the salt and/or phenol concentrations increased, and at lower storage temperatures. In general, the growth probabilities of L. monocytogenes were affected more profoundly by salt and storage temperature than by phenol. The growth probabilities of L. monocytogenes estimated by the TSB model were higher than those by the salmon model at the same salt/phenol concentrations and storage temperatures. The growth probabilities predicted by the salmon and TSB models were comparable at higher storage temperatures, indicating the potential use of TSB as a model system to substitute salmon in studying the growth behavior of L. monocytogenes may only be suitable when the temperatures of interest are in higher storage temperatures (e.g., >12 °C). The model for salmon demonstrated the effects of salt, phenol, and storage temperature and their interactions on the growth probabilities of L. monocytogenes, and may be used to determine the growth probability of L. monocytogenes in smoked seafood.  相似文献   

20.
From 2359 specialty meats (continental sausages, cured/fermented, dried meats) sampled from markets and specialty food shops, 98.9% of samples were of satisfactory or acceptable microbiological quality. However, 16 (0.7%) were unsatisfactory as a result of Escherichia coli, Staphylococcus aureus or Listeria spp. contamination (≥102 CFU/g), and nine (0.4%) were unacceptable due to presence of Salmonella spp. or Listeria monocytogenes (>102 CFU/g). Meats with unacceptable levels of L. monocytogenes were within shelf life (range: 8–143 days remaining). Nine different subtypes of L. monocytogenes were detected with sero/AFLP type 1/2c VII predominating (37%), although this subtype was not overrepresented in any particular meat type (P > 0.05). Ninety-six percent of continental sausages and cured/fermented products were stored at <8 °C at premises, including seven of the nine unacceptable samples. These nine meats were all pre-packed prior to supply to retail premises (OR = 0.1 P = 0.003) indicating that contamination with bacterial pathogens occurred earlier in the production chain. Most samples (72.7%, 8/11) with unsatisfactory levels of E. coli were sliced on request, suggesting cross-contamination at point of sale. This study highlights the importance of ensuring that products do not become contaminated before final packaging, that storage conditions are controlled, and that durability dates are an accurate indication of the shelf life of the product so as to minimise the potential for L. monocytogenes to be present at levels hazardous to health at the point of sale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号