首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fluoromisonidazole (FMISO), labeled with the positron emitter 18F, is a useful hypoxia imaging agent for PET studies, with potential applications in patients with tumors, cardiovascular disease and stroke. METHODS: Radiation doses were calculated in patients undergoing imaging studies to help define the radiation risk of FMISO-PET imaging. Time-dependent concentrations of radioactivity were determined in blood samples and PET images of patients following intravenous injection of [18F]FMISO. Radiation absorbed doses were calculated using the procedures of the Medical Internal Radiation Dose (MIRD) committee, taking into account the variation in dose based on the distribution of activities observed in the individual patients. As part of this study we also calculated an S value for brain to eye. Effective dose equivalent was calculated using ICRP 60 weights. RESULTS: Effective dose equivalent was 0.013 mSv/MBq in men and 0.014 mSv/MBq in women. Individual organ doses for women were not different from men. Assuming bladder voiding at 2- or 4-hr intervals, the critical organ that received the highest dose was the urinary bladder wall (0.021 mGy/MBq with 2-hr voiding intervals or 0.029 mGy/MBq with 4-hr voiding intervals). CONCLUSION: The organ doses for [18F]FMISO are comparable to those associated with other commonly performed nuclear medicine tests and indicate that potential radiation risks associated with this study are within generally accepted limits.  相似文献   

2.
The cocaine analog 2 beta-carbomethoxy-3 beta-[4-iodophenyl]tropane (beta-CIT) labeled with 11C was used to study dopamine reuptake sites with PET. METHODS: Three normal subjects and nine patients with Parkinson's disease were investigated. Each of them underwent a dynamic PET scan (25 timeframes over 80 min) with [11C]-beta-CIT. A dose of 102.5-211.3 MBq (2.77-5.71 mCi) of this ligand was administered intravenously and a PET examination with an ECAT 931/08 PET camera was carried out. Ratios between the striatal/cortical/thalamic/midbrain and cerebellar uptake of this radioligand were calculated. RESULTS: The highest accumulation of [11C]beta-CIT was observed in the caudate and putamen, though there was some uptake in the thalamus and the midbrain. Cortical uptake was negligible. Carbon-11-beta-CIT accumulated significantly less in the putamen of the Parkinson's patients than in the normal subjects. The putamen-to-cerebellum ratio in the Parkinson's patients was 1.59 +/- 0.04 and 1.80 +/- 0.13s (p = 0.028) in the normal subjects. In the caudate, there was no significant difference between the Parkinson's patients and the normal subjects. CONCLUSION: These results imply that [11C]beta-CIT is a useful compound for carrying out a PET examination of the function of the presynaptic monoaminergic neurons both in normal and pathological brains.  相似文献   

3.
We present biodistribution and dosimetry results for 64Cu-benzyl-TETA-MAb 1A3 from 15 human subjects injected with this tracer as determined by serial PET imaging of the torso. METHODS: PET imaging was used to quantify in vivo tracer biodistribution at two time points after injection. Absorbed dosimetry calculated using MIRD-11 and the updated MIRDOSE3 was compared with estimates obtained using rat biodistribution data. RESULTS: By measuring activity concentrations in the torso, and extrapolating for the whole body using standard organ and tissue volumes, we were able to account for 93% of the injected radiopharmaceutical over a range of imaging times from 0 to 36 hr postinjection. Based on PET imaging and the MIRD-11 schema, the liver and spleen are the critical organs with average absorbed doses of 0.12 and 0.10 mGy/MBq (0.44 and 0.39 rad/mCi). The revised MIRDOSE3 scheme yields similar values for these and other organs but also results in a dose of 0.14 mGy/MBq (0.53 rad/mCi) to the heart wall. In the rat, the large intestine is the critical organ at 0.14 mGy/MBq (0.52 rad/mCi), while liver and kidneys each receive 0.11 mGy/MBq (0.41 rad/mCi). Some disparities in absorbed doses determined by these methods are evident but are a result of dissimilar biodistributions in rats and humans. For most organs, rat extrapolated values are higher than the human measurements with PET. CONCLUSION: This study shows that torso PET imaging can quantitatively measure the whole-body biodistribution of a radiopharmaceutical as long as it has relatively slow pharmacokinetics.  相似文献   

4.
This article describes a new method of [11C]choline synthesis for intravenous injection. We aimed at the utilization of this compound for brain tumor imaging with PET. METHODS: After [11C]carbon dioxide production in a cyclotron and the subsequent [11C]methyl iodide synthesis, [methyl-11C]choline was synthesized by the reaction of [11C]methyl iodide with "neat" dimethylaminoethanol at 120 degrees C for 5 min. Purification was achieved by evaporation of the reactants followed by passage of the aqueous solution of the product through a cation-exchange resin cartridge. The time required for overall chemical processing, excluding the cyclotron operation, was 15 min. Radiochemical yield was > 98%. Radiochemical purity was > 98%. Chemical purity was > 90% (dimethylaminoethanol was the only possible impurity). Specific radioactivity of the product was > 133 GBq/mumol. The whole body distribution was examined in rabbits with PET. Clinical studies were performed in patients with brain tumor using PET after intravenous injection of 370 MBq of [11C]choline. RESULTS: In rabbits,[11C]choline was taken up from blood by various tissues very rapidly, and the radioactivity remaining in blood became almost negligible 5 min after intravenous injection. Taking advantage of this characteristic, we obtained stable tissue distribution images of human brain using PET. In patients with brain tumor, PET produced clearly delineated positive images of the tumors. CONCLUSION: Carbon-11-choline can be used for obtaining clear images of brain tumor in PET.  相似文献   

5.
Quantification in positron emission tomography (PET) and single photon emission tomographic (SPET) relies on attenuation correction which is generally obtained with an additional transmission measurement. Therefore, the evaluation of the radiation doses received by patients needs to include the contribution of transmission procedures in SPET (SPET-TM) and PET (PET-TM). In this work we have measured these doses for both PET-TM and SPET-TM. PET-TM was performed on an ECAT EXACT HR+ (CTI/Siemens) equipped with three rod sources of germanium-68 (380 MBq total) and extended septa. SPET-TM was performed on a DST (SMV) equipped with two collimated line sources of gadolinium-153 (4 GBq total). Two anthropomorphic phantoms representing a human head and a human torso, were used to estimate the doses absorbed in typical cardiac and brain transmission studies. Measurements were made with thermoluminescent dosimeters (TLDs, consisting of lithium fluoride) having characteristics suitable for dosimetry investigations in nuclear medicine. Sets of TLDs were placed inside small plastic bags and then attached to different organs of the phantoms (at least two TLDs were assigned to a given organ). Before and after irradiation the TLDs were placed in a 2.5-cm-thick lead container to prevent exposure from occasional sources. Ambient radiation was monitored and taken into account in calculations. Transmission scans were performed for more than 12 h in each case to decrease statistical noise fluctuations. The doses absorbed by each organ were calculated by averaging the values obtained for each corresponding TLD. These values were used to evaluate the effective dose (ED) following guidelines described in ICRP report number 60. The estimated ED values for cardiac acquisitions were 7.7 x 10(-4) +/- 0.4 x 10(-4) mSv/MBq.h and 1.9 x 10(-6) +/- 0.4 x 10(-6) mSv/MBq.h for PET-TM and SPET-TM, respectively. For brain scans, the values of ED were calculated as 2.7 x 10(-4) +/- 0.2 x 10(-4) mSv/MBq.h for PET-TM and 5.2 x 10(-7) +/- 2.3 x 10(-7) mSv/MBq.h for SPET-TM. In our institution, PET-TM is usually performed for 15 min prior to emission. SPET-TM is performed simultaneously with emission and usually lasts 30 and 15 min for brain and cardiac acquisitions respectively. Under these conditions ED values, estimated for typical source activities at delivery time (22,000 MBq in SPET and 555 MBq for PET), were 1.1 x 10(-1) +/- 0.1 x 10(-1) mSv and 1.1 x 10(-2) +/- 0.2 x 10(-2) mSv for cardiac PET-TM and SPET-TM respectively. For brain acquisitions, the ED values obtained under the same conditions were 3.7 x 10(-2) +/- 0.3 x 10(-2) mSv and 5.8 x 10(-3) +/- 2.6 x 10(-3) mSv for PET-TM and SPET-TM respectively. These measurements show that the dose received by a patient during a transmission scan adds little to the typical dose received in a routine nuclear medicine procedure. Radiation dose, therefore, does not represent a limit to the generalised use of transmission measurements in clinical SPET or PET.  相似文献   

6.
Technetium-99m TRODAT-1 is an analog of cocaine that selectively binds the presynaptic dopamine transporters. The primary purpose of this study was to measure its whole-body biokinetics and radiation dosimetry in healthy human volunteers. The study was conducted within a regulatory framework that required its pharmacological safety to be assessed simultaneously. METHODS: The sample included 4 men and 6 women ranging in age from 22-54 yr. An average of 20 whole-body scans were acquired sequentially on a dual-head camera for up to 46 hr after the intravenous administration of 370+/-16 MBq (10.0+/-0.42 mCi) 99mTc TRODAT. The renal excretion fractions were measured from 12-24 discrete urine specimens. The fraction of the administered dose in 17 regions of interest and each urine specimen was quantified from the attenuation and background corrected geometric mean counts in conjugate views. Multiexponential functions were iteratively fit to each time-activity curve using a nonlinear, least squares regression algorithm. These curves were numerically integrated to yield source organ residence times. Gender-specific radiation doses were then estimated with the Medical Internal Radiation Dose technique for each subject individually before any results were averaged. RESULTS: There were no pharmacological effects of the radiotracer on any of the subjects. The early planar images showed differentially increased activity in the nose, pudendum and stomach. SPECT images demonstrated that the radiopharmaceutical localized in the basal ganglia in a distribution that was consistent with selective transporter binding. Image analysis showed that the kidneys excreted between 20% and 32% of the injected dose during the first 22-28 hr postadministration, after which no more activity could be recovered in the urine. The dose limiting organ in both men and women was the liver, which received an average of 0.046 mGy/MBq (0.17 rads/mCi, range 0.14-0.22 rad/mCi). In the worst case, which was clearly an over-estimation, it would have taken 22.7 mCi to deliver 5 rad to the liver. CONCLUSION: TRODAT may be a safe and effective radiotracer for imaging dopamine transporters in the brain and the body.  相似文献   

7.
Local cerebral serotonin synthesis capacity was measured with alpha-[C-11]methyl-L-tryptophan ([C-11]AMT) in normal adult human brain (n = 10; five males, five females; age range, 18-38 years, mean 28.3 years) by using positron emission tomography (PET). [C-11]AMT is an analog of tryptophan, the precursor for serotonin synthesis, and is converted to alpha-[C-11]methyl-serotonin ([C-11]AM-5HT), which is trapped in serotonergic neurons because [C-11]AM-5HT is not degraded by monoamine oxidase. Kinetic analysis of [C-11] activity in brain after injection of [C-11]AMT confirmed the presence of a compartment with unidirectional uptake that represented approximately 40% of the activity in the brain at 50 min after tracer administration. The undirectional rate constant K, which represents the uptake of [C-11]AMT from the plasma to brain tissue followed by the synthesis and physiologic trapping of [C-11]AM-5HT, was calculated using the Patlak graphic approach on a pixel-by-pixel basis, thus creating parametric images. The rank order of K values for different brain regions corresponded well to the regional concentrations of serotonin in human brain (P < .0001). High serotonin synthesis capacity values were measured in putamen, caudate, thalamus, and hippocampus. Among cortical regions, the highest values were measured in the rectal gyrus of the inferior frontal lobe, followed by transverse temporal gyrus; anterior and posterior cingulate gyrus; middle, superior, and inferior temporal gyri; parietal cortex; occipital cortex, in descending order. Values in women were 10-20% higher (P < .05, MANOVA) throughout the brain than those measured in men. Differences in the serotonin synthesis capacity between men and women measured in this study may reflect gender differences of importance to both normal and pathologic behavior. This study demonstrates the suitability of [C-11]AMT as a tracer for PET scanning of serotonin synthesis capacity in human brain and provides normal adult values for future comparison with patient groups.  相似文献   

8.
We tested in normal human subjects a less invasive method to obtain plasma input function required in the calculation of the brain serotonin synthesis rate measured with positron emission tomography (PET) and alpha-[11C]methyl-tryptophan (alpha-MTrp). The synthesis rates derived with the arterial input function were compared to those derived from venous plasma and venous sinus time-radioactivity curves obtained from dynamic PET images. Dynamic PET images were obtained for the lengths up to 90 minutes after an injection of alpha-MTrp (400 to 800 MBq). Input functions were generated from both artery and vein in three subjects, and from artery only in two subjects. Net unidirectional uptake constants of alpha-MTrp (K*; mL/g/min) were calculated in several brain regions graphically using data between 20 and 60 minutes after injection with different input functions. In the five subjects with arterial sampling, we tested two methods for correcting the input functions from the venous samples: (1) normalization to the mean exposure time at 20 minutes from arterial curve; and (2) the use of the venous sinus curve for the first 20 minutes. Venous curves coincided with the arterial ones after about 20 minutes. When the venous curves were used, there was an underestimation of the area under the curves up to 20 minutes, resulting in a 5% to 30% overestimation of K* values. Combined use of the sinus curve up to 20 minutes and venous curve from 20 to 60 minutes as an input function resulted in the K* (mL/g/min) values larger by 7.1 +/- 3.8% than the K* values estimated with the arterial input function. Normalization of the venous curve to the exposure time at 20 minutes obtained from the arterial plasma curve resulted in a bias in the K* of about -0.34 +/- 3.32%. The bias from the K* values was propagated to the serotonin synthesis rates. The use of a combination of the venous blood samples and venous sinus as the input function resulted in an acceptable bias in the serotonin synthesis rates from the tissue time-radioactivity curves generated by PET.  相似文献   

9.
OBJECTIVE: The therapeutic effects of methylphenidate in the treatment of attention deficit disorder have been attributed to its ability to increase the synaptic concentration of dopamine by blocking the dopamine transporters. However, the levels of dopamine transporter blockade achieved by therapeutic doses of methylphenidate are not known. This study measured, for the first time, dopamine transporter occupancy by orally administered methylphenidate in the human brain and its rate of uptake in the brain. METHOD: Positron emission tomography (PET) and [11C]cocaine were used to estimate dopamine transporter occupancies after different doses of oral methylphenidate in seven normal subjects (mean age=24 years, SD=7). In addition, the pharmacokinetics of oral methylphenidate were measured in the baboon brain through use of PET and [11C]methylphenidate administered through an orogastric tube. RESULTS: At 120 minutes after administration, oral methylphenidate produced a dose-dependent blockade of dopamine transporter; means=12% (SD= 4%) for 5 mg, 40% (SD=12%) for 10 mg, 54% (SD=5%) for 20 mg, 72% (SD=3%) for 40 mg, and 74% (SD=2%) for 60 mg. The estimated dose of oral methylphenidate required to block 50% of the dopamine transporter corresponded to 0.25 mg/kg. Oral methylphenidate did not reach peak concentration in brain until 60 minutes after its administration. CONCLUSIONS: Oral methylphenidate is very effective in blocking dopamine transporters, and at the weight-adjusted doses used therapeutically (0.3 to 0.6 mg/kg), it is likely to occupy more than 50% of the dopamine transporters. The time to reach peak brain uptake for oral methylphenidate in brain corresponds well with the reported time course to reach peak behavioral effects.  相似文献   

10.
Two new N-omega-fluoroalkyl analogs of [123I]2beta-carbomethoxy-3beta-(4-iodophenyl)tropane ([123I]beta-CIT), the fluoroethyl and fluoropropyl compounds ([123I]FE-CIT and [123I]FP-CIT, respectively), have been shown to have faster kinetics and better selectivity for the dopamine transporter than [123I]beta-CIT. We examined the organ biodistribution and radiation safety of these two compounds in six healthy volunteers who received an injection with each of the two compounds 2 weeks apart. Data were obtained on the Strichman 860 whole-body scanner. Transmission scans were obtained in all subjects prior to the injection of the radiotracer with a line source and used to derive organ-specific attenuation correction factors. Whole-body planar images were acquired every hour for the first 6 h, and at 24 h. Attenuation-corrected regional conjugate counts were converted into units of activity using a calibration factor obtained for each subject by dividing whole-body conjugate decay-corrected counts from the first acquisition by the injected activity. Radiation dose estimates were on average higher for [123I]CIT-FE than for [123I]CIT-FP, with the lower large intestine receiving the highest exposure: 0.15+/-13% mGy/MBq (mean +/-COV) and 0.12+/-14% mGy/MBq for [123I]FE-CIT and [123I]FP-CIT, respectively, followed by the upper large intestine and the spleen.  相似文献   

11.
1. Homozygously mdr1a gene disrupted mice (mdr1a(-/-) mice) and wild type mice (mdr1a(+/+) mice) were used to develop a method for P-glycoprotein (P-gp) function imaging non-invasively and to study the effect of a P-gp reversal agent on its function in vivo. 2. [11C]verapamil (0.1 mg/kg) was administered and the changes in tissue concentrations were determined ex vivo by organ extirpation and in vivo with PET. To block P-gp function, cyclosporin A was administered. 3. Biodistribution studies revealed 9.5-fold (P < 0.001) and 3.4-fold (P < 0.001) higher [11C]verapamil in the brain and testes of mdr1a(-/-) mice than in mdr1a(+/+) mice. Cyclosporin A (25 mg/kg) increased [11C]verapamil levels in the brain and testes of mdr1a(+/+) mice in both cases 3.3-fold (P < 0.01 (brain); P < 0.001 (testes)). Fifty mg/kg cyclosporin A increased [11C]verapamil in the brain 10.6-fold (P < 0.01) and in the testes 4.1-fold (P < 0.001). No increases were found in the mdr1a(-/-) mice. This indicates complete inhibition of P-gp mediated [11C]verapamil efflux. 4. Positron camera data showed lower [11C]verapamil levels in the brain of mdr1a(+/+) mice compared to those in mdr1a(-/-) mice. [11C]verapamil accumulation in the brain of mdr1a(+/+) mice was increased by cyclosporin A to levels comparable with those in mdr1a(-/-) mice, indicating that reversal of P-gp mediated efflux can be monitored by PET. 5. We conclude that cyclosporin A can fully block the P-gp function in the blood brain barrier and the testes and that PET enables the in vivo measurement of P-gp function and reversal of its function non-invasively.  相似文献   

12.
In the treatment of neural crest tumors, such as pheochromocytoma, with[131I]MIBG, bone marrow toxicity limits the amount of administered activity and, thus, a therapeutically useful tumor dose. METHODS: We calculated tumor doses in a series of diagnostic studies with [123I]MIBG using accurate quantification of SPECT and planar scintigraphy. By extrapolating diagnostic results to therapeutic activities of [131I]MIBG, we could compare the results with whole-body doses from a series of therapies. RESULTS: The tumor dose was DT = 2.2 mGy MBq(-1) (median value of 27 measurements, range 0.04 < or = DT < or = 20 mGy MBq(-1) and the whole-body dose in a series of 16 patients undergoing 50 therapies was DWB = 0.12 +/- 0.04 mGy MBq(-1) (mean +/- s.d.). The therapeutic ratio varied between 130 to below 10 in some patients. CONCLUSION: The results were compared with published data. We found clearly skewed distribution of tumor doses, with a majority of tumors receiving only a few mGy per MBq administered activity. In some patients, however, doses did reach 20 mGy MBq(-1).  相似文献   

13.
This article presents dosimetry based on the measurement of fluoro-DOPA activity in major tissues and in the bladder contents in humans after oral pretreatment with 100 mg carbidopa. METHODS: Bladder activity was measured continuously by external probe and calibrated using complete urine collections. Quantitative dynamic PET scans provided time-activity curves for the major organs. Bladder wall dosimetry was calculated using the methods of MIRD Pamphlet No. 14. Effective dose was calculated as described in ICRP Publication 60. RESULTS: Mean absorbed dose to the bladder wall surface per unit administered activity was 0.150 mGy/MBq (0.556 rad/mCi) with the realistic void schedule used in our studies. The dose was 0.027 mGy/MBq (0.101 rad/mCi) to the kidneys, 0.0197 mGy/MBq (0.0728 rad/mCi) to the pancreas, and 0.0186 mGy/MBq (0.0688 rad/mCi) to the uterus. Absorbed doses to other organs were an order of magnitude or more lower than the bladder, 0.009-0.015 mGy/MBq. The effective dose per unit administered activity was 0.0199 mSv/MBq (0.0735 rem/mCi.) CONCLUSION: Urinary excretion of fluoro-DOPA was altered significantly by pretreatment with carbidopa. In general, any manipulation of tracer metabolism in the body should be expected to produce changes in biodistribution and dosimetry. The largest radiation dose was to the bladder wall, for which our estimate was one-fifth of that from the original report. The methods used reflect realistic urinary physiology and typical use of this tracer. The principles of MIRD Pamphlet No. 14 should be used in planning studies using tracers excreted in the urine to minimize the absorbed dose.  相似文献   

14.
The effect of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (6R-BH4) and L-tyrosine infusion on [11C]dopamine synthesis was analyzed in the striatum of Rhesus using positron emission tomography (PET). The rate for decarboxylation from L-[beta-11C]DOPA to [11C]dopamine was calculated using a graphical method with cerebellum as a reference region. Although the peripheral administration of 6R-BH4 at low dose (2 mg/kg) did not provide a significant increase in the rate of dopamine biosynthesis, a high dose of 6R-BH4 (20 mg/kg) induced an elevation of the rate. This 6R-BH4-induced elevation of the dopamine synthesis rate was further dose-dependently enhanced by the continuous infusion of L-tyrosine (0.2 and 1.0 mumol/min/kg). L-Tyrosine infusion with a rate of 1.0 mumol/min/kg caused an enhancement of the rate even during low dose administration of 6R-BH4 (2 mg/kg). L-Tyrosine infusion alone did not induce any elevation of the dopamine biosynthesis rate. The analysis of plasma indicated that the metabolic ratios of L-[beta-11C]DOPA to each metabolite were not affected by 6R-BH4 and/or L-tyrosine infusion. The results suggest that the low dose loading of tyrosine facilitates the activity of 6R-BH4 on the presynaptic dopamine biosynthesis, and also that the combined effects can be monitored by PET using L-[beta-11C]DOPA as a biochemical probe.  相似文献   

15.
Analogues of the potent and selective 5-HT1A ligand, WAY 100635, were synthesized and examined as potential candidates for imaging 5-HT1A receptors by positron emission tomography (PET). Several of the analogues displayed nanomolar affinity for the 5-HT1A receptor, comparable to WAY 100635. Three of these were examined in a model of human liver metabolism vis-à-vis WAY 100635. All showed a markedly lower propensity for amide hydrolysis than WAY 100635. Radiolabelling of these three potential PET radiotracers with carbon-11 was readily achieved from [11C]-iodomethane, and the newly synthesized radioligands were tested in vivo in rats for binding to 5-HT1A receptors. Whereas two of the ligands failed to bind to 5-HT1A receptors in vivo, one was successful. The latter, [11C]-7 [4-(2'-methoxyphenyl)-1-[2'-[N-(2'-pyridinyl)-2-bicyclo[2.2.2]octanec arboxamido]ethyl]-piperazine], showed good brain penetration, hippocampal:cerebellar ratios of 10:1 at 45 min postinjection. Blocking studies with a variety of drugs demonstrated that the binding of [11C]-7 in vivo was selective for 5-HT1A receptors. [11C]-7 is a promising candidate as a ligand for imaging 5-HT1A receptors by PET.  相似文献   

16.
A common complication in patients with breast or prostate cancer is bone metastases causing pain. New radionuclide therapy methods have recently been proposed for palliation, including 186Re-hydroxyethylidene diphosphonate (186Re-HEDP). This paper reports on the local development of 186Re-HEDP and the biodistribution studied in animals for eventual use in patients. Adult dose was computed assuming a 70 kg standard man. The 186Re was labelled to HEDP using standard techniques. The biodistribution in five Chacma baboons (Papio ursinus) was studied. Doses ranging from 39.4 to 44.9 MBq kg(-1) (mean 43.6 +/- 2.8 MBq kg[-1]) were administered, corresponding to an adult human dose of 2960 MBq (80 mCi). Whole-body images of the animals were obtained with a dual-headed scintillation camera on an hourly basis for 6 h post-injection and then daily for 3 days. The bone, soft tissue, kidneys and urinary bladder were considered source organs and data from these organs were used in a compartmental model to obtain the mean residence times of the radionuclide in the different source organs. Radiation dose estimates for 186Re-HEDP were subsequently obtained with the MIRDOSE 3 program. The estimated absorbed radiation doses to some of the organs (expressed in mGy MBq[-l]) were as follows: bone surface 1.69; kidneys 0.09; liver 0.04; ovaries 0.04; red marrow 0.75; total body 0.12; urinary bladder wall 0.43. 186Re-HEDP yielded an effective dose of 0.17 mSv MBq(-1). The radiation dose delivered to the bone marrow in this study did not cause any detrimental effect to the baboons, indicating that locally produced 186Re-HEDP is suitable for clinical use.  相似文献   

17.
Serotonergic 5-hydroxytryptamine-1A (5-HT1A) receptors are of interest in the pathophysiology of several neuropsychiatric disorders such as anxiety, depression and schizophrenia. [Carbonyl-11C]WAY-100635 has recently been shown to be suitable for quantitative determination of 5-HT1A receptors in the human brain using PET. For group comparisons of neuroreceptor distribution on a pixel-by-pixel basis, an anatomic standardization technique is required. In the current study, we have built a database of normal 5-HT1A receptor distribution using [carbonyl-11C]WAY-100635 and an anatomic standardization technique. METHOD: A PET examination lasting 63 min was performed on six subjects after intravenous injection of [carbonyl-11C]WAY-100635. The radioactivity of the PET images were integrated in the interval 12-63 min and normalized by the radioactivity of the cerebellum, providing a measure of the binding potential (BP) in each pixel. Each PET image was transformed into a standard brain anatomy using a computerized brain atlas system. From the standardized PET images, the sample mean and the SD of the BP were calculated in each pixel. RESULT: On the anatomically standardized average image, high BP was observed in the cerebral cortices, hippocampus and raphe nucleus, whereas low BP was observed in the basal ganglia and thalamus. This regional distribution is in good agreement with the distribution of 5-HT1A receptors known from in vitro studies. CONCLUSION: The anatomic standardization technique permits building of a database of the normal 5-HT1A receptor distribution in the living human brain. This technique can be applied for group comparisons of neuroreceptor distribution on a pixel-by-pixel basis.  相似文献   

18.
Malignant brain tumors pose diagnostic and therapeutic problems. Despite the advent of new brain imaging modalities, including magnetic resonance imaging (MRI) and [F-18]fluorodeoxyglucose (FDG) positron emission tomography (PET), determination of tumor viability and response to treatment is often difficult. Blood-brain barrier disruption can be caused by tumor or nonspecific reactions to treatment, making MRI interpretation ambiguous. The high metabolic background of the normal brain and its regional variability makes it difficult to identify small or less active tumors by FDG imaging of cellular energetics. We have investigated 2-[C-11]thymidine (dThd) and PET to image the rate of brain tumor cellular proliferation. A series of 13 patients underwent closely spaced dThd PET, FDG PET, and MRI procedures, and the image results were compared by standardized visual analysis. The resulting dThd scans were qualitatively different from the other two scans in approximately 50% of the cases, which suggests that dThd provided information distinct from FDG PET and MRI. In two cases, recurrent tumor was more apparent on the dThd study than on FDG; in two other patients, tumor dThd uptake was less than FDG uptake, and these patients had slower tumor progression than the three patients with both high dThd and FDG uptake. To better characterize tumor proliferation, kinetic modeling was applied to dynamic dThd PET uptake data and metabolite-analyzed blood data in a subset of patients. Kinetic analysis was able to remove the confounding influence of [C-11]CO2, the principal labeled metabolite of 2-[C-11]dThd, and to estimate the flux of dThd incorporation into DNA. Sequential, same-day [C-11]CO2 and [C-11]dThd imaging demonstrated the ability of kinetic analysis to model both dThd and CO2 simultaneously. Images of dThd flux obtained using the model along with the mixture analysis method for pixel-by-pixel parametric imaging significantly enhanced the contrast of tumor compared with normal brain. Comparison of model estimates of dThd transport versus dThd flux was able to discern increased dThd uptake simply on the basis of blood-brain barrier disruption retention on the basis of increased cellular proliferation. This preliminary study demonstrates the potential for imaging brain tumor cellular proliferation to provide unique information for guiding patient treatment.  相似文献   

19.
Recent studies from our laboratory have shown that methyl palmoxirate (MEP), an inhibitor of mitochondrial beta-oxidation of long chain fatty acids, can be used to increase incorporation of radiolabeled palmitic acid into brain lipids and reduce beta-oxidation of the fatty acid. Thus, MEP allows the use of carbon labeled palmitate for studying brain lipid metabolism in animals and humans by quantitative autoradiography or positron emission tomography (PET). As it is essential to pretreat human subjects with an acute dose of MEP prior to intravenous injection of [1-11C]palmitate for PET scanning, this study was undertaken to determine the plasma elimination half-life of MEP in rats and human subjects and to provide insight about the drug's absorption and metabolism. A gas chromatographic method was developed to measure MEP in body fluids. Following oral administration of MEP to rats (2.5 and 10 mg/kg) and to humans, the unmetabolized drug could not be detected in plasma or urine (sensitivity of detection was 1 ng). However, when MEP was injected intravenously (10 mg/kg) in rats, a peak initial concentration could be measured in plasma (7.7 microg/mL), the clearance of the drug from plasma was rapid (t1/2 = 0.6 min), which indicates that MEP readily enters tissue lipid pools or is metabolized like long-chain fatty acids. As no adverse experience occured in the 11 human subjects studied, oral administration of a single dose of MEP was safe under the conditions of this study and may be used to increase the incorporation of positron labeled palmitic acid for studying brain lipid metabolism in vivo by PET.  相似文献   

20.
Copper-62-pyruvaldehyde bis(N4-methyl)thiosemicarbazone (PTSM) has been proposed as a generator-produced radiopharmaceutical for perfusion imaging using PET. Several clinical studies have demonstrated the ability of 62Cu-PTSM to quantitate myocardial and cerebral perfusion in humans. Because 62Cu-PTSM is generator-produced, it can be provided to clinical centers without cyclotron availability and, therefore, represents a cost-effective, practical PET perfusion tracer for clinical applications. To assess the safety, time-dependent biodistribution, and whole-body and organ-specific absorbed radiation dose estimates of this tracer, a Phase I study of 62Cu-PTSM was performed using whole-body imaging with PET in 10 healthy volunteers and with the radiopharmaceutical delivered by a compact modular generator unit. METHODS: Five male and five female subjects underwent a series of clinical tests and head-to-midthigh, whole-body PET scans at three time points over 1 hr after intravenous injection of 62Cu-PTSM. Before injection of the tracer, PET transmission scans were performed and used to correct the emission data for attenuation. Final image data were expressed in units of mCi/cc. Using standard organ weights, the percent injected dose per organ was calculated. Biodistribution data were obtained at three different time points and from these data biological half-lives in different organs were determined for calculation of radiation absorbed dose estimates. RESULTS: The liver was seen as the critical organ receiving a dose of 0.0886 rad/mCi. This organ defined the maximum single injected dose at 56 mCi using the limit of 5 rads to a critical organ per study per year. The whole-body dose is 0.0111 rad/mCi, resulting in a 0.622 rad exposure with a maximum single injection dose. Only trace levels of activity were found in the urine, which suggests low levels of urinary excretion and bladder exposure. No significant clinical, electrocardiographic or laboratory abnormalities were seen after the injection of 62Cu-PTSM. CONCLUSION: Copper-62-PTSM is a clinically safe radiopharmaceutical with favorable dosimetry for human studies at injected doses significantly above those projected for use in clinical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号