首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
方辰  陈川辉  张林进  叶旭初 《材料保护》2013,46(1):59-61,10
为了给材料抗冲蚀磨损性能相关标准提供准确数据,自制了高温冲蚀装置,以304不锈钢为试材,研究此装置在以磨粒粒径、冲蚀角度、冲蚀气流压力、环境温度4因素构成的正交条件下的稳定性,并对冲蚀规律及试验后磨粒粒径的分布进行了分析。结果表明:各试验条件下的重复性、再现性试验误差均在允许范围内,装置稳定性符合要求;304不锈钢在60~80目磨粒粒径、90°冲蚀角、0.15 MPa气流压力、600℃条件下冲蚀磨损量最小,在140~160目磨粒粒径、15°冲蚀角、0.35 MPa气流压力、800℃条件下冲蚀磨损量最大;磨粒在与材料表面发生碰撞的过程中粒径会发生变化,产生破碎现象。  相似文献   

2.
邓云华  岳喜山  管志超 《材料导报》2018,32(14):2425-2430
采用镍基BNi2钎料钎焊制备了304不锈钢消音蜂窝,对蜂窝芯体与面板钎焊界面组织和蜂窝的力学性能进行了分析和测试,并研究了钎焊热循环次数对钎焊界面组织和蜂窝拉伸力学性能的影响,为实际工程应用确定未焊合缺陷补焊次数提供了依据。液态钎料的毛细作用使钎料沿蜂窝芯箔材表面铺展并与箔材发生显著的元素扩散反应,蜂窝芯与面板之间的钎缝由Ni、Cr、Si等互溶而成的Ni基固溶体组织组成,未生成脆性共晶组织或金属间化合物。钎料中的B和Si元素显著扩散于面板材料中,形成钎料-面板反应区,因B元素的沿晶界快速扩散效应,面板侧组织呈现晶界元素渗入特征。随着钎焊次数增加,钎料对母材的溶解和晶界渗透增加,钎焊界面组织发生显著变化。制备的304不锈钢消音蜂窝拉脱强度为7.21MPa,呈现板/芯界面附近蜂窝芯破坏特点,多次钎焊时蜂窝拉脱强度呈下降趋势。制备的304不锈钢消音蜂窝平压、侧压和弯曲力学性能测试过程均经历弹性变形、塑性变形和失稳三个阶段,强度值分别为5.67MPa、33.85MPa和105.87MPa,平压和弯曲失效模型为蜂窝失稳,侧压破坏除蜂窝失稳外,发生穿孔面板与蜂窝芯体剥离的现象。鉴于多次钎焊热循环对蜂窝拉脱强度的不利影响,建议304不锈钢蜂窝钎焊缺陷的最大补焊次数为一次。  相似文献   

3.
目的 满足实际生产需求,提高304不锈钢的抗拉强度。方法 在304不锈钢粉末中添加不同质量分数的Ni60AA粉末,采用激光束对粉末进行快速成形,得到不同的试样。通过金相显微镜对不锈钢试样的显微组织进行观察,利用拉力试验机对试样进行抗拉强度测试。结果 随着添加Ni60AA粉末含量的增加,板材试样的抗拉强度呈现出先增大后减小的趋势,当Ni60AA粉末的质量分数为10%时,试样抗拉强度最大,为754~771MPa。结论 添加Ni60AA粉末后,激光快速成形的304不锈钢板材试样微观组织中有部分镍化合物析出,形成强化相,304不锈钢试样的抗拉强度得到很大提高。  相似文献   

4.
为研究电容储能缝焊工艺对304不锈钢接头性能的影响规律,对0.5 mm厚304不锈钢板进行了缝焊工艺实验,通过接头拉剪力检测和金相显微组织观察,对比了不同焊接速度、充电电容和放电频率下的缝焊接头组织特点,并分析了各工艺参数对接头拉剪力、熔核宽度、焊缝重叠量和焊透率的影响.结果表明:储能焊焊缝中心晶粒细小,熔合区为柱状晶,重叠部位晶粒粗大,接头组织呈现不均匀性,随着充电电容的增大晶粒变得更细密,组织不均匀程度显著降低,焊接速度和放电频率增大导致晶粒组织粗化并出现缩孔缺陷,提高电极压力可克服缩孔并使组织趋向均匀;充电电容对接头拉剪力的影响较小,焊接速度、充电电压、放电频率和电极压力调到一个合适值后,继续增大参数值对接头拉剪力影响很小;焊接速度的增大引起焊缝熔核宽度和重叠量急剧下降,充电电压增大引起焊缝焊透率下降过多,导致飞溅、过烧、毛刺等焊接缺陷的产生.因此,304不锈钢储能缝焊应采用低的焊接速度、较小的充电电压和较高的电极压力。  相似文献   

5.
304不锈钢电解着色膜的耐蚀性及结构   总被引:4,自引:1,他引:3  
对304不锈钢电解着色膜的耐蚀性能及其结构进行了探讨。结果表明,不锈钢电解着色膜改善了阳极极化行为,使孔蚀电位升高,腐蚀率下降。电解着色膜主要由α-Fe2O3和Cr2O3的氧化膜构成。电解着色膜中由于Cr元素的富集,提高了表面膜的钝化能力,改善了其耐蚀性能。  相似文献   

6.
采用低温等离子体氮化技术,对AISI304不锈钢进行表面氮化处理。考察了离子能流密度对不锈钢氮化层性能的影响。运用X射线衍射、扫描电镜和显微硬度计等分析手段对氮化层的物相组成及表面硬度进行分析及测量;利用球-盘摩擦实验在干摩擦条件下对氮化层的摩擦磨损性能进行测试。结果表明:AISI304不锈钢经低温等离子体氮化处理后,形成单一高氮面心立方相γN。在氮化处理过程中,离子能流密度受工作压力及基片负偏压影响较大。离子能流密度变化能显著影响不锈钢氮化层的摩擦性能,随着离子能流密度的增加,氮化层显微硬度增大,摩擦系数减小,耐磨损性能上升。  相似文献   

7.
由于304不锈钢在中、高温下摩擦学性能较差,制约了其在重要摩擦运动副零部件上的应用。为改善304不锈钢的摩擦学性能,以Ni60粉末为增韧相,WS2为合成润滑相的前驱化合物,TiC为高硬度耐磨相,采用高能激光束在其表面原位合成自润滑耐磨复合涂层。利用X射线衍射仪、扫描电子显微镜、显微硬度计、摩擦磨损试验机和探针式材料表面磨痕测量仪表征涂层和基体的物相、微观结构、显微硬度与表面形貌,并系统研究涂层和基体在20,300,600,800℃下的摩擦学性能及其磨损机理。结果表明:涂层主要由Cr0.19Fe0.7Ni0.11,Ti2SC,Fe2C,Cr7C3,CrS和WS2组成;涂层的平均显微硬度(302.0HV0.5)略高于基体(257.2HV0.5),但涂层上部区域的硬度(425.4HV0.5)约为基体的1.65倍;涂层在所有等温摩擦学实验中摩擦因数和磨损率均低于基体,300℃时涂层润滑效果最好,摩擦因数为0.3031,600℃时涂层耐磨效果最好,磨损率为9.699×10^-5 mm^3·N^-1·m^-1。  相似文献   

8.
通过大量的试验,分析讨论了变形速率对σb和δ的影响;冷加工对304不锈钢奥氏体敏化态晶间腐蚀(IGC)的影响及控制;变形量和化学成分主要是(Cr/Ni)对304不锈钢磁性强度影响。根据试验得出,304不锈钢磁性强度随Cr/Ni值和变形量增加而增加,这是因为冷变形诱发马氏体的产生且有磁性;拉伸强度σb随拉伸速率的增加而减少,当速率>40mm/min时,σb趋于稳定;304不锈钢经冷变形后T-T-S曲线的IGC发生区向低温和长时间敏化侧移动。  相似文献   

9.
目的 采用自主研制的水下激光填丝焊接装备,在304奥氏体不锈钢板材表面进行U形坡口激光填丝焊接试验,为304不锈钢水下修复工作提供技术参考。方法 在功率为5 600 W、焊接速度为6 mm/s、送丝速度为205 cm/min、保护气体流量为15 L/min、排水气体流量为30 L/min的条件下进行焊接试验,并对空气和水下环境下的焊缝进行对比检测分析。通过光学显微镜分析2种环境下焊缝的显微组织;对2种焊缝进行拉伸、弯曲等力学性能测试;采用显微硬度计测试1 kg载荷下不同区域的显微硬度;使用VersaSTAT3F电化学工作站测定在3.5%(质量分数)的NaCl溶液中2种焊缝的开路电位和极化曲线。结果 2种环境下的焊缝均无明显裂纹、气孔等缺陷;显微组织主要由奥氏体和铁素体组成,但2种环境下焊缝的奥氏体晶粒大小和铁素体形状均略有差别,焊缝拉伸断口均为典型的韧性断裂形貌且抗拉强度符合304不锈钢标准。2种环境下焊缝的微观组织和晶粒大小不同,水下焊缝硬度高于空气的。通过分析2种环境下焊缝的开路电位和极化曲线,可知水下焊缝的耐腐蚀性略高。结论 所开发的局部干法水下激光填丝焊接工艺可以满足实际工程中...  相似文献   

10.
304不锈钢和铁素体不锈钢的耐腐蚀性能较好,导致材料的晶粒度评级比较困难。将高锰酸钾硫酸溶液作为腐蚀剂,水浴加热后对304不锈钢进行腐蚀,可获得清晰、完整的奥氏体晶粒,且不显示晶粒内孪晶界;采用放置约3 a的王水作为腐蚀剂对铁素体不锈钢进行腐蚀,可获得清晰的晶粒形貌,实现其晶粒度级别的准确评定。  相似文献   

11.
模拟冷却水中304不锈钢的耐蚀性影响因素研究   总被引:16,自引:1,他引:15  
用电化学方法研究了Cl^-、S^2-、NO3^-、温度以及某电厂水质稳定剂对304不锈钢耐蚀性的影响。极化曲线表明:在[Cl-]/[SO4^2-]约为0.56时,点蚀电位开始下降,并随着Cl-浓度的增大逐渐降低;S2-的加入使钝化电流显著增大;NO3-浓度增加使点蚀电位逐渐升高;溶液温度的提高使点蚀电位降低,钝化电流也有所增大,钝化膜的耐蚀性降低;实验表明采用的某厂水质稳定剂可引起304不锈钢点蚀电位的下降。Mott-Schottky图显示S2-浓度的增加使体现p-型半导体(氧化铬)性质的直线段发生较大变化,说明硫离子影响了铬氧化物的性质。  相似文献   

12.
韩玮  孟宪明  赵杰  张俊宝 《材料保护》2011,44(3):77-80,91
超低碳钢(IF钢)具有极优异的深冲性能,但耐磨性和衬蚀性差,限制了其在汽车工业中的广泛应用.采用冷喷涂(CGDS)技术在IF钢基体上制备了耐磨性和耐蚀性好的304不锈钢涂层.利用X射线衍射仪和扫描电镜对涂层组织及相结构进行了分析,并在3.5%(质量浓度)NaCl溶液中进行了电化学腐蚀性能测试.结果表明:冷喷涂304不铸...  相似文献   

13.
为查明某企业304不锈钢汽车装饰条发生锈蚀的原因,从材料材质、锈蚀点形貌、锈蚀发生位置成分等几个方面进行分析,同时采用盐雾加速腐蚀试验方法测试了材料耐腐蚀性能.结果表明,材料在酸洗后酸洗液未清洗干净,导致了材料表层发生腐蚀,打磨可以避免材料的进一步腐蚀.  相似文献   

14.
董彩常  杨朝晖  张波  胡艳丽 《材料保护》2011,44(9):32-34,92
用腐蚀挂片试验方法研究了304不锈钢在盐湖卤水中暴露2a的腐蚀行为,井运用室内电化学试验方法研究了其电化学行为。结果表明:盐湖卤水浸泡2a后,304不锈钢腐蚀速率为0.0003mm/a,主要表现为点蚀,试样侧面加工缺陷处存在较深的点蚀坑;在卤水中浸泡768h后,304不锈钢表面钝化膜局部被破坏,出现点蚀孔。  相似文献   

15.
采用共聚焦显微镜测量了经不同敏化处理的304不锈钢晶间腐蚀后的晶间裂纹深度,通过统计晶间裂纹深度值的分布建立了304不锈钢晶间腐蚀敏感性的评价方法。如果晶间裂纹深度值大于0.5μm,则可认为所测试的304不锈钢发生了晶间腐蚀现象。  相似文献   

16.
热镀锌(HDG)钢片经SiO2∶Na2O摩尔比为1.00和3.50的硅酸钠溶液中处理后,在其表面获得硅酸盐转化膜。用中性盐雾(NSS)试验、塔菲尔极化和电化学阻抗谱(EIS)研究了硅酸盐膜试样的耐蚀性,将被刀片划伤的硅酸盐膜试样进行NSS腐蚀后,用扫描电镜(SEM)和能谱仪(EDS)观察和分析了划痕处的腐蚀,以探讨硅酸盐膜的自愈性。结果表明:在较高SiO2∶Na2O摩尔比溶液中获得的硅酸盐转化膜具有较好的耐蚀性和自愈性,腐蚀过程中硅酸负离子从膜层中迁移划痕处形成新的保护膜(由Zn,O和Si组成)抑制了划痕处锌的腐蚀。AFM观察发现,在摩尔比为3.50中获得的试样的膜层表面更加致密,这有利于阻止腐蚀介质的侵入和提供充裕的硅酸负离子迁移。并对硅酸盐转化膜试样的划痕的腐蚀过程的细节进行了分析和讨论。  相似文献   

17.
开展热处理对304和304L不锈钢在硝酸中耐蚀性的影响研究,可为不锈钢现场使用过程中的焊接和热处理提供指导.利用正火处理模拟不锈钢在焊接或者热加工过程的受热过程,考察304和304L不锈钢在硝酸中的耐蚀性随受热温度和时间的变化规律.利用电化学动电位再活化法(DL-EPR)与交流阻抗谱法(EIS)研究了不同正火处理条件对304和304L不锈钢在硝酸中耐蚀性的影响.结果表明:2种材料经650℃正火处理后敏化度均为最大值.经900℃正火处理后,304不锈钢的晶粒略有减小,敏化度与未经正火处理的试样相比略有增大,304L不锈钢的晶粒略有增大,敏化度与未经正火处理的试样相比略有减小.304和304L不锈钢经650℃正火处理后,在硝酸介质中其钝化膜的保护能力变差.随保温时间的延长,其在硝酸中的耐蚀性也逐渐降下降.  相似文献   

18.
304不锈钢纳米TiO2涂层的结构形貌与防腐蚀性能   总被引:1,自引:0,他引:1  
纳米TiO2涂层对304不锈钢具有较好的防腐蚀性能.采用溶胶-凝胶法与浸渍提拉技术在304不锈钢上制备纳米TiO涂层,用扫描电子显微镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)对涂层的结构、形貌及组成进行了表征,采用电化学方法研究了涂层的防腐蚀性能,并对其光阴极保护机理进行了探讨.结果表明:所制备的纳米TiO2涂层外观呈蓝色,表面连续、均匀,颗粒呈球形;TiO2为锐钛矿型;涂层主要由Ti,O和C 3种元素组成;纳米TiO2涂层具有一定的光电化学效应和防腐蚀性能.  相似文献   

19.
利用动电位极化、电化学阻抗谱(EIS)和激光电子散斑干涉(ESPI)研究了3.5%NaCl溶液中,SO24-浓度对304不锈钢点蚀行为的影响。使用0.3V(vs SCE)极化条件下的计时电流法结合ESPI确定了点蚀诱导时间。结果表明:当SO24-浓度为0.5%时,不锈钢的耐蚀性最差;当SO24-浓度低于1%时,不锈钢的耐蚀性较不存在SO24-时的耐蚀性差;当SO24-浓度高于1%时,不锈钢的耐蚀性较不存在SO24-时的耐蚀性好。在3.5%NaCl+0.5%Na2SO4溶液中,点蚀诱导时间是4s,在3.5%NaCl溶液中和3.5%NaCl+4%Na2SO4溶液中点蚀诱导时间分别是9s和94s。  相似文献   

20.
采用高频表面机械研磨方法在304不锈钢中制备出纳米晶和纳米孪晶结构。采用腐蚀失重试验和极化曲线测试等方法测试两种纳米结构304不锈钢在室温及80℃条件下5%硫酸溶液中的耐腐蚀性能,并利用透射电镜和扫描电镜分析其腐蚀性能和微观结构的关系。失重试验结果表明在80℃条件下5%硫酸溶液中,纳米孪晶比纳米晶结构的304不锈钢耐腐蚀性能好,以均匀腐蚀为主,点蚀为辅;而纳米晶则发生严重的点蚀。电化学测试结果表明:在室温条件下,纳米孪晶结构304不锈钢呈现高的自腐蚀电位和宽的钝化区间,但在80℃条件下,纳米晶和纳米孪晶结构304不锈钢的耐腐蚀性比粗晶不锈钢差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号