首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 869 毫秒
1.
Dynamics and stability of lean-premixed swirl-stabilized combustion   总被引:13,自引:0,他引:13  
Combustion instability remains a critical issue limiting the development of low-emission, lean-premixed (LPM) gas turbine combustion systems. The present work provides a comprehensive review of the advances made over the past two decades in this area. Recent developments in industrial dry-low-emission (DLE) swirl-stabilized combustors are first summarized. Various swirl injector configurations and related flow characteristics, including vortex breakdown, precessing vortex core, large-scale coherent structures, and liquid fuel atomization and spray formation, are discussed. Nonlinear behaviors of combustion processes observed in combustors are described. The influence of fuel preparation, combustor geometry, and operating conditions on combustion characteristics in swirl-stabilized combustors is examined. The mechanisms driving combustion instabilities, including hydrodynamic instabilities, equivalence ratio fluctuations, flame surface variations, and oscillatory liquid fuel atomization and evaporation are investigated. Instability stabilization methods, including both passive and active control techniques, are also reviewed. Finally, recent progress in both analytical modeling and numerical simulation of swirl-stabilized combustion are surveyed.  相似文献   

2.
王圳  吕田  潘卫明  兰健 《柴油机》2018,40(3):10-16
对国内外近年关于液态燃料跨/超临界喷射的实验及数值模拟研究进行综述和分析。分析表明:超临界作为一种不可规避的工况,其喷射具有完全不同于亚临界喷射的特性,气液界面消失,液滴和液丝等结构由高密度流体团代替,成为一个由湍流支配的无相变的扩散过程。现有研究多是对跨/超临界喷射现象的观测与描述,对该现象产生的机理及其对燃烧的影响尚不明确。采用传统喷雾模型进行超临界喷射仿真,得到的结果与实验现象有很大误差;采用真实流体状态方程所进行的仿真可大幅减小这个误差,但结果仍不理想。指出:跨/超临界喷射对燃烧稳定性的影响是航空航天领域的研究方向,而内燃机领域则更关注跨/超临界喷射对短暂雾化过程以及燃烧效率的影响。  相似文献   

3.
Utilization of a porous medium for combustion of liquid fuels is proved to be a promising approach for future applications. The porous medium burner for liquid fuels is more advantageous than the conventional open spray flame burner for several reasons; these include enhanced evaporation of droplet spray owing to regenerative combustion characteristics, low emission of pollutants, high combustion intensity with moderate turn-down ratio and compactness. This article provides a comprehensive picture of the global scenario of research and developments in combustion of liquid fuels within a porous medium that enable a researcher to determine the direction of further investigation. Accordingly, a glossary of the important terminology, the modeling approach, advances in numerical and experimental works and applications are included. The papers published in standard journals are reviewed and summarized with relevant comments and suggestions for future work.  相似文献   

4.
This review attempts to summarize the physical models and advanced methods used in computational studies of gas–liquid two-phase jet flows encountered in atomization and spray processes. In traditional computational fluid dynamics (CFD) based on Reynolds-averaged Navier–Stokes (RANS) approach, physical modelling of atomization and sprays is an essential part of the two-phase flow computation. In more advanced CFD such as direct numerical simulation (DNS) and large-eddy simulation (LES), physical modelling of atomization and sprays is still inevitable. For multiphase flows, there is no model-free DNS since the interactions between different phases need to be modelled. DNS of multiphase flows based on the one-fluid formalism coupled with interface tracking algorithms seems to be a promising way forward, due to the advantageous lower costs compared with a multi-fluid approach. In LES of gas–liquid two-phase jet flows, subgrid-scale (SGS) models for complex multiphase flows are very immature. There is a lack of well-established SGS models to account for the interactions between the different phases. In this paper, physical modelling of atomization and sprays in the context of CFD is reviewed with modelling assumptions and limitations discussed. In addition, numerical methods used in advanced CFD of atomization and sprays are discussed, including high-order numerical schemes. Other relevant issues of modelling and simulation of atomization and sprays such as nozzle internal flow, dense spray, and multiscale modelling are also briefly reviewed.  相似文献   

5.
燃油喷雾初始破碎及二次雾化机理的研究   总被引:3,自引:0,他引:3  
基于大涡模拟LES(large eddy simulation)理论和VOF(Volume of Fluid)方法,考察了燃油喷雾初始时刻即时间尺度为微秒级的液柱破碎过程,分析了初始破碎的机理,给出了该时间尺度下液柱初始破碎过程的模型;通过对一特定条件下的柴油机喷油器的建模和喷雾过程的大涡数值模拟,获得了液柱初始时刻"伞状头部"的喷雾形态,所得计算结果与相应的试验数据符合较好;数值模拟还直观地展现了液滴背风RT破碎、哑铃型破碎以及液滴的聚集融合等液滴的二次雾化过程.同时,也说明了大涡模拟这种准直接数值方法较之DDM(discrete droplets model)方法所具有的优势和潜力.  相似文献   

6.
本文建立了直喷式柴油机油膜雾化燃烧的半经验数学模型,即在实验研究的基础上利用数值分析技术在计算机上研究直喷式柴油机油膜雾化燃烧工作过程。该模型由燃烧室壁上油膜蒸发子模型和燃烧室空间雾化燃烧子模型耦合而成。并利用数学模型对6E150C型柴油机做了模拟计算。经实测验证,其结果是令人满意的。  相似文献   

7.
Current status of droplet and liquid combustion   总被引:2,自引:0,他引:2  
The present understanding of spray combustion in rocket engine, gas turbine, Diesel engine and industrial furnace applications is reviewed. In some cases, spray combustion can be modeled by ignoring the details of spray evaporation and treating the system as a gaseous diffusion flame; however, in many circumstances, this simplification is not adequate and turbulent two-phase flow must be considered. The behavior of individual droplets is a necessary component of two-phase models and recent work on transient droplet evaporation, ignition and combustion is considered, along with a discussion of important simplifying assumptions involved with modeling these processes. Methods of modeling spray evaporation and combustion processes are also discussed including: one-dimensional models for rocket engine and prevaporized combustion systems, lumped zone models (utilizing well-stirred reactor and plug flow regions) for gas turbine and furnace systems, locally homogeneous turbulent models, and two-phase models. The review highlights the need for improved injector characterization methods, more information of droplet transport characteristics in turbulent flow and continued development of more complete two-phase turbulent models.  相似文献   

8.
The purpose of this study was to develop numerical simulation of spray combustion of emulsified fuel with considering puffing and micro-explosion. First, a mathematical model for puffing was proposed. In the proposed puffing model, the rate of mass change of a droplet during puffing was expressed by the evaporation rate of dispersed water and the mass change rate due to fine droplets spouted from the droplet surface. The mass change rate due to fine droplets was related to the evaporation rate of the dispersed water and each liquid content. This model had only one experimental parameter. The essential feature of this model was that it was simple to apply to numerical simulation of spray combustion. First, the validity of the proposed puffing model was investigated with the experimental results for a single droplet. The calculated results for a single droplet with the experimental parameter varying from 5.0 to 10 were in good agreement with the experimental results. Moreover, numerical simulation of spray combustion of emulsified fuel was carried out. The occurrence of puffing and micro-explosion was determined by the inner droplet temperature. When micro-explosion occurred, a droplet changed to vapor rapidly. When the proposed puffing model was used in numerical simulation of spray combustion, the experimental parameter in the puffing model was determined for each droplet by random numbers within the range 5.0-10. The calculated results of spray combustion of emulsified fuel without considering puffing or micro-explosions were different from the experimental results even where combustion reactions were almost terminated. Meanwhile, the calculated results when considering puffing and micro-explosions were in good agreement with experimental results at the same location.  相似文献   

9.
10.
Flash‐boiling occurs when a fuel is injected into a combustion chamber where the ambient pressure is lower than the saturation pressure of the fuel. It has been known that flashing is a favorable mechanism for atomizing liquid fuels. On the other hand, alternative fuels, such as gaseous fuels and oxygenated fuels, are used to achieve low exhaust emissions in recent years. In general, most of these alternative fuels have high volatility and flash‐boiling takes place easily in the fuel spray when injected into the combustion chamber of an internal combustion engine under high pressure. In addition the multicomponent mixture of high‐ and low‐volatility fuels has been proposed in the previous study in order to control the spray and combustion processes in an internal combustion engine. It was found that the multicomponent fuel produces flash‐boiling with an increase in the initial fuel temperature. Therefore, it is important to investigate these flash‐boiling processes in fuel spray. In the present study, the submodels of a flash‐boiling spray are constructed. These submodels consider the bubble nucleation, growth, and disruption in the nozzle orifice and injected fuel droplets. The model is implemented in KIVA3V and the spray characteristics of multicomponent fuel with and without flashing are numerically investigated. In addition, these numerical results are compared with experimental data obtained in the previous study using a constant volume vessel. The flashing spray characteristics from numerical simulation qualitatively show good agreement with the experimental results. In particular, it is confirmed from both the numerical and experimental data that flash‐boiling effectively accelerates the atomization and vaporization of fuel droplets. This means that a lean homogeneous mixture can be quickly formed using flash‐boiling in the combustion chamber. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(5): 369–385, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20117  相似文献   

11.
A multi-dimensional computational fluid dynamics (CFD) modeling was conducted on a D.I. (Direct Injection) diesel engine fueled by bio-diesel based on KIVA4 code. Comprehensive chemistry prediction of bio-diesel fuel was taken into account by enhancing the combustion model of the default KIVA4 code. An advanced multi-component fuel combustion model was applied to accurately predict the oxidation of saturated and unsaturated agents of the bio-diesel fuel using a reduced chemical kinetics mechanism. In order to accurately model spray, atomization and evaporation of the bio-diesel fuel, detailed thermophysical properties of fuel components were predicted and tabulated in the fuel routine of the KIVA4 code. After the validation for cylinder pressure and heat release rate at engine mid load with experimental engine tests, further numerical studies were performed to investigate effects of injection strategies such as double and triple injection pulses and axial location of injector nozzle. It has been found that cylinder peak pressure was increased by applying double and triple injections and some enhancements on output power was also observed. Moreover, it was found that nozzle axial location has considerable effect on combustion of the bio-diesel fuel where wall impingement of the liquid bio-diesel fuel resulted in lower evaporation and higher unburnt hydro carbon (UHC) emission.  相似文献   

12.
13.
高压旋流中空燃油喷雾日益广泛地应用于缸内直喷(GDI)汽油机中,为此发展了一种适合于模拟这种燃油喷雾雾化过程的薄膜喷雾模型.燃油薄膜的破碎过程采用表面波破碎理论来模拟.对Spalding蒸发模型和油滴阻力模型进行了改进,用来计算油滴的蒸发和阻力变形过程,同时引入初始喷雾液团的计算模块.在多维内燃机计算程序KIVA3的基础上建立了改进的数值计算模型,并对不同喷射条件下的定容压力容器中空旋流燃油喷雾过程进行了数值计算,对计算和实验所得的喷雾特性包括油束外形结构,油束喷雾贯穿度和油滴粒径进行了详细的比较,同时对单液滴的蒸发过程也进行了数值计算,油束模型的计算结果与实验结果吻合良好。  相似文献   

14.
应用一个准维多区模型对柴油机喷雾的蒸发、混合和燃烧进行了数值模拟,提出了求解燃油蒸发过程的油滴直径瞬时变化的简单代数方程,考虑了碰壁对喷雾射流贯穿的影响。并对一台直喷式柴油机的燃烧过程进行了计算,计算结果与试验值符合较好。  相似文献   

15.
This article provides a comprehensive review of the spray combustion of fast pyrolysis bio-oil (FPBO, also called bio-oil, pyrolysis oil or pyrolysis liquid biofuel), which is widely regarded as one of the most economically feasible renewable resources to facilitate the replacement of fossil oils. The utilization of FPBO as a fuel is challenging due to its unique atomization and combustion characteristics but it is important given the need to develop a more sustainable energy infrastructure. Significant efforts have been made in utilizing FPBO as a practical alternative fuel and the first FPBO facilities for heat and/or power generation have been brought online in recent years. FPBO-fueled burners, boilers, and furnaces are ready from a technical perspective for large-scale industrial use, and even small-scale systems show excellent flame stability, low emissions, and minimal requirements for secondary fuel usage. FPBO applications in gas turbine and compression-ignition engines are technically more challenging, currently having had only limited successes in larger-scale units and for short time intervals in smaller ones. With recent research and technological advances, however, FPBO use in small-scale combustion engines appears to be technically feasible. In the literature, extensive research efforts have been dedicated to this topic either as a fuel itself or its utilization for practical applications. Nonetheless, inadequate considerations have been given to the critical role of FPBO atomization and its subsequent fuel/air mixing, which in turn controls the combustion efficiency and emission characteristics of a system. Understanding the spray combustion properties of FPBO is especially important because of the fuel's unfavorable properties compared to fossil oils including low energy density, high viscosity, high water content, containing suspended solid particulates and non-volatile residue, chemical instability, and an incompatibility with conventional fossil oils. The information presented herein, therefore, focuses on understanding the challenges and constraints that are unique to FPBO applications, along with proposing several strategies to properly atomize and combust this fuel in order to enhance combustion efficiency and reduce pollutant emissions in practical systems. Although substantial progress has been made in understanding the FPBO spray combustion as revealed by this review, better standardization of FPBO properties, more efficient techniques for optimizing atomization and combustion for different applications, and more studies to understand the long-term reliability of devices running on FPBO are needed.  相似文献   

16.
17.
采用大涡模拟方法和不同的雾化模型对定容弹中燃油喷射和雾化过程进行数值分析.着重探讨亚网格尺度湍动能,特别是燃油喷雾所诱导的亚网格湍能源项对液滴运动和喷雾特性的影响,并进一步探讨了亚网格气相湍动能对液滴弥散速度乃至喷雾场的影响.通过对不同的工况条件的模拟计算对喷雾的影响因素进行了讨论并与相关的实验进行了比较.计算结果表明,KH-RT破碎模型要优于MTAB模型,湍流弥散效应和亚网格湍动能喷雾源项对燃油喷雾有着重要的影响,其作用均是减少喷雾贯穿距,使模拟结果更接近于实验.其中,湍流弥散效应的影响更为显著.  相似文献   

18.
戴俊  庞天照 《柴油机》2011,33(3):17-21
利用CFD软件对TBD234共轨柴油机的喷油器内流场进行流体动力学仿真;对燃烧室进行实体建模,建立喷雾燃烧模型;将内流场的计算结果作为喷雾模型的边界条件,完善喷雾燃烧模型,使模型考虑喷嘴的结构及喷孔内部的燃油流动特性对雾化的影响.对喷雾过程进行拍照试验,将各个时刻的FIRE仿真喷雾图像和试验得到的喷雾图像进行比较,验证...  相似文献   

19.
The performance of a nonsprayed porous burner (NSPB) is investigated through both numerical and experimental studies. The major requirement of liquid fuel combustion systems is excellent fuel vaporization, which is accomplished by using porous medium. Instead of heterogeneous combustion, which occurs in free space of a conventional sprayed burner, a homogeneous combustion of vaporized kerosene and air takes place within a porous medium. The liquid kerosene is preheated and completely vaporized in the first porous medium before being mixed with preheated air in the mixing chamber (i.e., a small space between two porous media). Then the combustion occurs in the second porous medium. A subcooled boiling, single global reaction combustion, and local nonthermal equilibrium between fluid and solid phases with phase change under complex radiative heat transfer are considered. The model accuracy is validated by the experimental data before parametric study—that is, equivalence ratio and firing rate are performed. Result show that a self-sustaining evaporation without atomization and matrix-stabilized flame can be achieved in the NSPB by providing the radiant output efficiency in the same range as a conventional premixed gaseous porous burner. This indicates that the NSPB is one possible technology to replace conventional spray burners for future requirements.  相似文献   

20.
Oil atomization is an effective enhanced heat transfer method for single screw compressor, which can make the compression process of single screw compressor be close to the isothermal process, then the working efficiency can be improved. In order to obtain optimal atomization technology effectively, the heat transfer of single screw compressor is analyzed based on fuzzy random wavelet finite element method. Firstly, the relating researching progresses are summarized. Secondly, the heat transfer governing equation of single screw compressor is constructed based on large eddy simulation technology. Thirdly, the heat transfer wavelet finite element model of single screw compressor is established through using Hermitian wavelet function, and then the fuzzy random Hermitian wavelet finite element mode is established based on λ level set theory. Finally, the heat transfer rules of single screw compressor is obtained based on simulation analysis, the effect of atomization on heat transfer of single screw compressor is obtained, results can offer effective theoretical guidance for designing the novel atomization system for single screw compressor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号