共查询到20条相似文献,搜索用时 0 毫秒
1.
为了提高铝合金的耐腐蚀性能、耐磨损性能及硬度,通过溶胶-凝胶反应,以纳米硅溶胶为主要原料,有机硅烷为偶联剂,制备了新型纳米SiO2防腐蚀涂料.通过浸渍-提拉法在铝合金(LY12)基体表面形成涂层,通过改变硅溶胶的含量,详细研究了此涂层的显微硬度、耐磨性能和耐腐蚀性能与硅溶胶含量的关系.结果显示,新型有机-无机杂化纳米SiO2涂层厚度为20μm时具有良好的耐腐蚀性能和耐磨性能,由此而使此杂化膜替代对环境有害的铬酸盐转化膜成为可能,并为有机-无机杂化纳化材料的应用提供了理论依据. 相似文献
2.
为了提高铝合金的耐腐蚀性能、耐磨损性能及硬度,通过溶胶-凝胶反应,以纳米硅溶胶为主要原料,有机硅烷为偶联剂,制备了新型纳米SiO2防腐蚀涂料。通过浸渍-提拉法在铝合金(LY12)基体表面形成涂层,通过改变硅溶胶的含量,详细研究了此涂层的显微硬度、耐磨性能和耐腐蚀性能与硅溶胶含量的关系。结果显示,新型有机-无机杂化纳米SiO2涂层厚度为20μm时具有良好的耐腐蚀性能和耐磨性能,由此而使此杂化膜替代对环境有害的铬酸盐转化膜成为可能,并为有机-无机杂化纳化材料的应用提供了理论依据。 相似文献
3.
溶胶-凝胶法制备有机/无机杂化材料研究进展 总被引:10,自引:0,他引:10
综述了溶胶-凝胶法制备有机/无机杂化材料的途径和产物的结构特征,并对有机/无机杂化材料进行了分类;阐述了溶胶-凝胶法制备有机/无机杂化材料的基本原理和步骤。 相似文献
4.
溶胶—凝胶法制备无机/有机杂化材料研究进展 总被引:26,自引:0,他引:26
本文介绍了溶胶-凝胶法的基本过程,对无机/有机杂化材料进行了分类,描述了溶胶-凝胶法制备无机有机杂化材料的常用方法,对杂化材料进行了评述,并预测了将来的发展趋势。 相似文献
5.
6.
本文介绍了溶胶-凝胶法的基本过程,对无机/有机杂化材料进行了分类,描述了溶胶-凝胶法制备无机有机杂化材料的常用方法,对杂化材料进行了评述,并预测了将来的发展趋势。 相似文献
7.
溶胶-凝胶法制备TiO_2-有机硅杂化涂层材料 总被引:3,自引:0,他引:3
以钛酸丁酯(TBT)、二苯基二甲氧基硅烷(DPS)以及γ-(2,3-环氧丙氧)丙基三甲氧基硅烷(GPTS)为原料,采用溶胶-凝胶法,经涂膜、固化,制备了一系列TiO2-有机硅涂层材料.通过不同方法对杂化涂层的微结构、光学、热学和机械性质进行了表征.结果表明,在可见光范围内,所得杂化涂层材料的透过率在90%以上,且随着Ti含量的增加而减小.当Ti含量在10mol%~70mol%范围内,涂层折射率在1.54~1.64范围内可调. 相似文献
8.
9.
以正硅酸乙酯(TEOS)为原料,在乙醇共溶剂和盐酸催化剂条件下,采用溶胶-凝胶方法制备SiO2胶体溶液,通过旋涂法在Kapton基体上制备了SiO2薄膜。采用自己研制的空间综合环境地面模拟设备对试样进行了原子氧暴露实验,测试表明溶胶-凝胶制备的SiO2涂层抗原子氧侵蚀性能优异,抗原子氧侵蚀性能比聚酰亚胺基体提高了2个数量级以上。经FTIR和XPS分析表明在原子氧暴露后涂层表面生成了一层SiO2,它阻止了原子氧对基体材料的进一步侵蚀。涂覆涂层后基体的光学性能没有受到影响。实验证明溶胶-凝胶制备抗原子氧侵蚀的防护涂层是一种行之有效的方法。 相似文献
10.
11.
以羟乙基纤维素 (HEC)和四甲氧基硅烷 (TMOS)为原料 ,利用溶胶 凝胶技术 ,通过TMOS在HEC水溶液中的水解 缩聚反应制得了HEC SiO2 凝胶材料。探讨了反应体系pH值、H2 O与TMOS的体积比率和HEC用量等因素对HEC TMOS水解 缩聚体系凝胶时间和光学性能的影响。借助差示扫描量热法考察了HEC SiO2 杂化材料的热性能 ,并利用扫描电镜观察了HEC凝胶与SiO2 凝胶复合前后的微观结构特征。结果表明 ,随着HEC用量和TMOS浓度的增大 ,水解 缩聚体系凝胶时间缩短 ,可见光透过率降低 ;随pH值的增大 ,可见光透过率降低 ,凝胶时间变化较为复杂 ;HEC SiO2 杂化材料是以HEC凝胶为柔性连续相 ,SiO2 凝胶为刚性分散相的两相体系 ,该体系热性能较好 ,玻璃化转变温度为 2 35℃ 相似文献
12.
PMTES/SiO2有机-无机杂化材料的研究 总被引:10,自引:0,他引:10
以甲基三乙氧基硅烷(MTES)正硅酸乙酯(TEOS)为原料,采用溶胶-凝胶工艺制备出均质透明的PMTES/SiO2杂化玻璃,并进行IR,DTA,TG,SEM测定,结果表明,该杂化玻璃的耐热性比有机玻璃优点,耐400℃高温,具有疏水透气性能,可用于文物陈列和水产养殖业。 相似文献
13.
采用溶胶-凝胶法制备了SiO2及A12O3溶胶,并将其掺入到聚酰胺酸基体中,得到无机纳米SiO2-Al2O3/聚酰亚胺杂化膜,并对其结构性能进行了研究.实验表明,薄膜材料中无机纳米SiO2和Al2O3粒子分散均匀,与有机相存在键合;材料热分解温度有所提高. 相似文献
14.
以异氰酸丙基三乙氧基硅烷(IPTS)接枝环氧树脂(EP)合成出了一种新型的环氧预聚物(IEP),由IEP通过溶胶-凝胶法制备出了EP/SiO2杂化材料。通过FT-IR、AFM、TG、DMA表征和分析了杂化材料的化学结构、SiO2纳米粒子在EP基体中的分散性和无机纳米粒子的引入对EP树脂热性能和力学性能的影响。结果表明,原位生成的纳米SiO2粒子在EP基体中的分散性良好,其平均尺度约为50nm;杂化材料的热性能和力学性能相比于纯EP有了很大程度的提高。 相似文献
15.
HEC/SiO2有机—无机杂化材料的制备与性能 总被引:4,自引:0,他引:4
以羟乙基纤维素(HEC)和四甲氧基硅烷(TMOS)为原料,利用溶胶-凝胶技术,通过TMOS在HEC水溶液中的水解-缩聚反应制得了HEC/SiO2凝胶材料。探讨了反应体系pH值、H2O与TMOS的体积比率和HEC用量等因素对HEC/TMOS水解-缩聚体系凝胶时间和光学性能的影响。借助差示扫描量热法考察了HEC/SiO2杂化材料的热性能。并利用扫描电镜观察了HEC凝胶与SiO2凝胶复合前后的微观结构特征。结果表明,随着HEC用量和TMOS浓度的增大,水解-缩聚体系凝胶时间缩短,可见光透过率降低;随pH值的增大,可见光透过率降低,凝胶时间变化较为复杂;HEC/SiO2杂化材料是以HEC凝胶为柔性连续用,SiO2凝胶为刚性分散相的两相体系,该体系热性能较好,玻璃化转变温度为235℃。 相似文献
16.
溶胶—凝胶法制备无机—有机杂化材料:Ⅰ.无机—有机杂化材料的?… 总被引:5,自引:0,他引:5
无机-有机杂化材料的研制日益引起材料科学领域的广泛关注,它的性能决定其制备方法以及由此产生的微观网络结构。本文综述了溶胶-凝胶法制备无机-有机杂化材料的主要途径和产物的结构特点。 相似文献
17.
以正硅酸乙酯、钛酸正丁酯和聚乙二醇等为主要原料,采用溶胶-凝胶法成功合成了多孔SiO2-TiO2系块状材料。500℃焙烧2h后材料呈现非晶态结构。引入较多钛量时,使材料的孔径分布变窄、平均孔径下降,但增加了比表面积。在80℃热水中浸泡72小时以后,吸附一脱附曲线的类型和形状几乎没有变化;随着Ti含量的增加,比表面积和孔容积的变化率减小。多孔材料在98℃的20%硫酸溶液中重量损失率随Ti含量变化不大,Ti引入并不能提高材料在酸液中的耐蚀性;但引入Ti使多孔材料在95℃NaOH碱液中的耐蚀性明显改善。 相似文献
18.
以正硅酸四乙酯(TEOS)为硅源,4,4′-(六氟异丙烯)二酸酐(6FDA)为二酐单体,4,4′-二氨基二苯醚(ODA)为二胺单体,采用无水溶胶-凝胶法制备聚酰亚胺(PI)/二氧化硅(SiO_2)杂化薄膜(PI-SiO_2)。将3-氨基丙基三甲氧基硅烷(APS)通过化学键合连接到PI分子链上,使SiO_2颗粒在PI基体中均匀分散。研究了PI-SiO_2杂化薄膜的光学性能和热学性能。随着SiO_2含量的增加,PI-SiO_2杂化薄膜的黄色指数明显降低。在SiO_2添加量为40%(wt,质量分数)条件下,制得的PI-SiO_2的玻璃化转变温度最高为314.7℃,热膨胀系数(CTE)为27.65×10-6/℃,具有较好的热性能。 相似文献
19.
二氧化硅基有机-无机防腐蚀杂化膜的制备及性能 总被引:3,自引:0,他引:3
传统的钢铁表面覆膜技术如磷化、铬酸盐钝化等污染严重,硅烷化和有机-无机杂化涂层用于金属预处理则具有耐温、耐腐蚀等优点,又利于环保.以正硅酸乙酯、γ-氨丙基三乙氧基硅烷为原料,采用溶胶.凝胶法制备了SiO2基有机-无机杂化材料.通过红外光谱对不同温度处理的杂化材料进行了分析,以差示扫描量热法研究了杂化材料在不同温度下的吸放热反应,结合对杂化溶胶涂覆于钢铁基体表面形成涂层的塔菲尔曲线分析,对杂化膜的保护性能进行了研究.结果表明:涂层试样在N2气氛下300℃热处理,可以保证涂层中Si-O-Si键等最大程度地键合,并有效保留了有机组分,从而有利于保证杂化材料涂层的完整性,较大地提高了基体钢铁的耐腐蚀性能,可作为金属表面涂装处理工序中良好的中间过渡层. 相似文献