首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
通过加热回流-喷雾干燥-高温煅烧三步法制备了包覆碳的纯相Li2MnSiO4锂离子电池正极材料,研究了回流时间对材料性能的影响.通过XRD、SEM、TEM和电化学测试对Li2MnSiO4材料的结构、形貌及电化学性能进行了测试和表征.结果表明,当电流密度为30mA/g时,所制备的材料首次放电容量达189.1mAh/g;当电流密度为300mA/g时,首次放电容量达132.9mAh/g,经过40次循环,保持了首次放电容量的55.6%.  相似文献   

2.
以LiOH溶液和不同粒径的自制球形TiO2为反应物, 通过水热法快速地合成了尖晶石型结构的球形Li4Ti5O12, 并考察了材料合成的水热反应机理和电化学性能。TiO2在100℃、5 mol/L LiOH溶液中经水热反应20 h得到前驱体, 再经800℃热处理2 h便可得到粒径大小不同(0.5~1.5 µm)且分布均匀的球形尖晶石Li4Ti5O12材料。LiOH在水热反应条件下扩散到球形TiO2内部, 得到在分子水平混合均匀的Li-Ti-O中间体, 利于高温下生成纯相的尖晶石Li4Ti5O12。所得粒径大小不同的Li4Ti5O12材料均表现出稳定的电化学循环充放电性能, 其中, 粒径为0.5 µm 的Li4Ti5O12材料的电化学性能最好: 室温下, 以0.2 C的倍率进行充放电, 其可逆容量达到158 mAh/g, 70周后容量保持率高于99%; 同时还表现出优异的高温循环稳定性, 55℃下以0.2 C的倍率进行充放电, 50次循环后其可逆放电比容量仍能达到125 mAh/g。  相似文献   

3.
在分析锂离子电池正极材料研究进展的基础上,开展了Li2FeSiO4的合成与改性研究,采用湿化学法-高温固相合成法制备了Li2FeSiO4/C正极材料.系统研究了回流过程和煅烧温度对Li2FeSiO4/C正极材料的影响.结果表明,采用回流、煅烧温度为650℃的样品首次放电容量为165mAh/g,经过10次循环后为138mAh/g,循环性能较好.  相似文献   

4.
通过固相反应法合成出Li3+xFe2-xMnxn(Po4)3(x-0~O.1)、Li3Fel.ω5Mn0.05(PO4)3和Li2.95Fe1.ωMnoN.05(PO4)3正极材料.采用行星式球磨方法,均匀混合正极材料和导电乙炔黑以提高活性材料的电子导电率和降低颗粒尺寸.Mn掺杂的Li3Fe2(PO4)3样品的恒电流充放电测试和伏安循环测试(2~4V)发现,所有样品中Fe3+/Fe2+氧化还原电对均有两个稳定的充放电平台(2.8、2.7V)、Li3+,Fe2-xMnxII(PO4)3和Li3Fe1.95Mn0.05(PO4)3中Mn3+/Mn2+电对的充放平台位于3.5V左右.不同价态Mn的掺杂均可明显提高正极材料的电化学性能,其中Mn掺杂样品的电化学性能最好,其中Li3.05Fel.95MnⅡ0.05(PO4)3/C的C/20和C/2恒流放电比容量分别可达11O和66mAh/g.  相似文献   

5.
溶剂组成对尖晶石LiMn2O4正极材料电化学性能的影响   总被引:3,自引:0,他引:3  
使用恒电流充放电和粉末微电极循环伏安方法研究了尖晶石LiMn2O4正极材料在不同混合溶剂的电解质溶液中的电化学性能,结合溶剂组分和电解质溶液的理化特性,探讨了影响尖晶石LiMn2O4正极材料电化学性能的溶剂因素。研究表明,电解质溶液组分在电极导电剂表面的氧化电位是决定LiMn2O4电极在其中的电化学循环性能的重要因素。在满足一定的氧化电位的前提下,LiMn2O4初始放电容量与电解质溶液的电导率大小有关。  相似文献   

6.
LiNiO2被认为是当前最具吸引力的锂离子电池正极材料之一。概述了LiNiO2正极材料的制备技术,重点介绍了软溶液工艺的几种技术(包括水热技术、电化学技术和水热电化学技术)在制备LiNiO2薄膜中的应用和特点,并对LiNiO2正极材料制备技术的发展趋势进行了展望。  相似文献   

7.
利用醋酸盐合成Li1.06Mn2O4及其电化学性能的研究   总被引:1,自引:0,他引:1  
郑子山  唐子龙 《材料导报》2000,(Z10):182-184
由醋酸锂和醋酸锰直接合成富锂尖晶石结构Li1.06Mn2O4,并由红外光谱及热重分析探讨其反应机理。最终产物具有良好的电化学性能及循环稳定性能。  相似文献   

8.
采用固相反应法在惰性气氛下合成了橄榄石型LiFePO4及其Ni2+掺杂正极材料,采用XRD,SEM和充放电等方法对目标材料进行了表征.XRD分析表明,掺杂少量Ni2+后的LiFePO4晶体结构并未发生变化;SEM观察发现,掺杂后,样品的粒径变小;充放电测试得出,比未掺杂的LiFePO4具有更好的电化学性能,首次放电比容量达145 mAh·g-1,高于纯的LiFePO4正极材料的容量90 mAh·g-1,经100次循环后掺杂Ni2+的LiFePO4和LiFePO4样品的容量保有率分别为91%和53%.  相似文献   

9.
LiCoO2正极材料的络合法合成及其电化学性能研究   总被引:4,自引:0,他引:4  
采用络合法制备了锂离子电池的活性正极材料LiCoO2纳米粉体,实验表明:合成的LiCoO2粉体结晶良好,层状结构发育完善,平均粒径为60nm而且粒径分布窄,比表面积大.电池充放电测试表明,正极的电化学性能与LiCoO2粉体的合成温度有关,其中700°C合成得到的LiCoO2正极材料具有最优的电化学性能:首次放电比容量高达167mAh/g,30次循环后其可逆比容量仍高达144mAh/g,容量损失13.8%.  相似文献   

10.
锂离子电池正极材料Li0.99Y0.01FePO4的制备   总被引:9,自引:0,他引:9  
橄榄石型LiFePO4是近年发展起来的一种锂离子电池正极材料,它的理论容量为170mAh/g。具有价格便宜、环境友好、无毒、无吸湿性、热稳定性好等优点,越来越受到人们的重视。但是由于LiFePO4的室温电导率低,影响了它的实际应用,为改善其电导率低的问题,本文采用固相法掺杂稀土元素Y合成Li0.99Y0.01FePO4,结果表明,掺杂后材料具有良好的电化学性能,其室温初始放电容量为129.9mAh/g,循环15次后几乎没有衰减。  相似文献   

11.
汪燕鸣  王广健  丁素芳 《功能材料》2012,(7):924-926,931
采用湿法球磨-喷雾干燥法制备了多孔球形锂离子电池Li2MnSiO4/C复合正极材料。X射线衍射(XRD)表明合成的Li2MnSiO4具有正交结构,属于Pmn21空间群。扫描电镜(SEM)和透射电镜(TEM)显示粉体复合材料为直径10μm左右的球形团簇,由100nm左右的颗粒堆积而成,颗粒表面包覆1层大约3nm的碳层。电化学测试表明,在0.05和0.5C倍率下,Li2MnSiO4/C样品的首次放电容量分别为153和110mAh/g,50次循环后容量分别保持80%和66%。  相似文献   

12.
采用间苯二酚–甲醛辅助溶胶–凝胶法制备了纳米Li2MnSiO4/C正极材料, 采用X射线衍射(XRD)、扫描电镜(SEM)和恒流充放电测试等方法对材料的结构、形貌以及电化学性能进行了分析和表征。结果表明, 所制备的样品属于正交晶系Pmn21空间群, 物相纯度很高, 颗粒尺寸细小(50 nm左右)且分布均匀, 并具有良好的电化学性能, 首次放电比容量为105.7 mAh/g, 50次循环后容量保持率高达90.7%。XRD图谱显示, 经过充放电循环后, Li2MnSiO4能始终保持稳定的晶体结构, 表明间苯二酚-甲醛在烧结过程中形成的网络包覆碳层不仅提高了材料的电子电导率, 还维持了材料结构的稳定。  相似文献   

13.
以Ni1-xCox(OH)2和LiOH·H2O为原料,采用软化学法在空气气氛中于700℃煅烧16h合成出层状LiNi1-xCoxO2正极材料,研究了不同掺钴量对材料的结构和电化学性能的影响,并用XRD及电性能测试考察了所得材料的结构与电化学性能.结果表明:低掺钴量(x≤0.1)时易生成无电化学活性的Li2Ni8O10化合物,高掺钴量(0.2≤x≤0.4)可促进LiNi1-xCoxO2层状结构的生成,有效减少阳离子混排及非化学计量产物的生成.电性能测试结果表明,掺钴量为0.3时的样品LiNi0.7Co0.3O2表现出最好的电化学性能,首次放电容量为172.5mAh/g,40次循环容量保持率达95%,显示较好的循环稳定性.  相似文献   

14.
通过水热法制备了石墨烯包覆量不同的石墨烯/富锂三元正极复合材料。采用X射线衍射仪、扫描电子显微镜和电化学交流阻抗等对包覆后富锂三元正极复合材料的物相结构、形貌及电化学性能进行了研究。结果表明:石墨烯包覆量为2%(质量分数)时,包覆效果较好,石墨烯/富锂三元正极复合材料首次库仑效率为89.6%,比富锂三元正极材料提高了17.16%,放电比容量为226.41mAh/g,比原材料提高了21.38mAh/g;以0.5C循环100次后石墨烯/富锂三元正极复合材料放电比容量可保持在154mAh/g,容量保持率为88%,比富锂三元正极材料提高了5.3%;石墨烯/富锂三元正极复合材料阻抗为75Ω,比富锂三元正极材料阻抗低50Ω。  相似文献   

15.
富锂锰基材料因其具有较高的充放电比容量而备受关注。针对其首次库仑效率低、循环和倍率性能差的问题,将具有三维Li^+通道的锂离子导体Li2ZrO3引入至富锂锰基正极材料Li[Li0.2Ni0.2Mn0.6]O2的表面对其进行包覆改性研究。通过XRD,TEM,SEM,EDS综合分析可知:Li2ZrO3成功包覆到样品表面。包覆层厚度为3 nm(包覆量1%,质量分数)时复合材料的电化学性能得到显著提升。0.1 C(1 C=200 mAh·g^-1)倍率下首次放电比容量可达271.5 mAh·g^-1,库仑效率为72.4%,降低了首次不可逆容量损失;0.5 C下循环100周次后放电比容量为191.5 mAh·g^-1,容量保持率为89.5%,5 C倍率放电比容量为75 mAh·g^-1,倍率性能提升。适当厚度的均匀Li2ZrO3包覆层可在样品表面形成核壳结构使样品更稳定,减少表面副反应,阻止生成较厚SEI膜,这得益于Li2ZrO3本身的高电导率、高电化学稳定性和较好的锂离子传导性。  相似文献   

16.
刘永光  朱靖  王岭 《化工新型材料》2012,40(2):35-37,45
具有α-NaFeO2层状结构复合过渡金属氧化物Li(Ni1-x-yMnx-Coy)O2是锂离子电池阴极材料的研究热点之一。对近几年锂离子电池Li(Ni1-x-yMnx-Coy)O2复合材料的发展近进行综述,探讨了三元材料及包覆、掺杂、改变过渡金属比例及对其性能的影响,指出了该类锂离子阴极材料的发展趋势。  相似文献   

17.
通过高温固相合成法以MnCO3为锰源、(MgCO3)4·Mg(OH)·5H2O为镁源,葡萄糖为碳源,在氩气气氛下合成二元掺杂Mn、Mg的LiFe0.8Mn0.1Mg0.1PO4/C和LiFePO4/C正极材料,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱仪(FT-IR)进行结构表征,通过恒电流充放电实验研究了LiFe0.8Mn0.1Mg0.1PO4/C和LiFePO4/C电化学性能。结果表明,二元掺杂Mn、Mg的LiFe0.8Mn0.1Mg0.1PO4/C呈现橄榄石结构,无杂质产生。与未掺杂的LiFePO4/C相比,掺杂后LiFe0.8Mn0.1Mg0.1PO4/C提高了电导率,0.1C倍率下放电可逆容量为131mAh/g,表现出良好的电化学性能。  相似文献   

18.
本文以甘蔗渣作为生物质碳源制备Na2MnPO4F/C正极材料。通过球磨法及原位热解法制备Na2MnPO4F/C正极材料,利用拉曼光谱对正极材料制备条件进行表征分析,得出Na2MnPO4F/C最佳制备条件为碳源用量15%、煅烧温度600℃。利用XRD、SEM、EDS、电化学测量技术等手段对材料进行表征分析,结果表明,材料结晶性良好,碳材料很好地包覆在Na2MnPO4F聚氟阴离子材料表面,并且不影响材料结构。组装成纽扣电池,进行电化学性能测试。结果表明Na2MnPO4F/C材料电化学性能优于Na2MnPO4F材料,在0.1C下,Na2MnPO4F/C材料首圈放电比容量为8.71 m Ah/g,而Na2MnPO4F材料首圈放电比容量为1.94 m Ah/g,通过原位热解法进行碳包覆能有效的提高材料的电子电导性,增加容量。  相似文献   

19.
Cd2SnO4水热制备及其气敏性能研究   总被引:1,自引:0,他引:1  
以SnCl4.5H2O、CdCl2·1/2H2O和NaOH为原料,采用水热法制备了Cd2SnO4粒子。通过XRD和SEM对其物相和形貌进行了分析,并将其制成气敏元件,进行气敏性能测试。结果表明制得的Cd2SnO4粒子为多面体,对乙醇、丙酮和三乙胺有较高的灵敏度和好的响应-恢复特性。  相似文献   

20.
尖晶石LiMn2O4是最有希望替代LiCoO2的新一代锂离子电池的正极材料。本文对锂离子电池的工作原理和3种正极材料作了简要介绍。综述了近年来LiMn2O4制备技术的研究进展,并对其今后的发展进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号