首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The binary Si–Zn and Mn–Si systems have been critically evaluated based upon available phase equilibrium and thermodynamic data, and optimized model parameters have been obtained giving the Gibbs energies of all phases as functions of temperature and composition. The liquid solution has been modeled with the Modified Quasichemical Model (MQM) to account for the short-range-ordering. The results have been combined with those of our previous optimizations of the Mg–Si, Mg–Zn and Mg–Mn systems to predict the phase diagrams of the Mg–Si–Zn and Mg–Mn–Si systems. The predictions have been compared with available data.  相似文献   

3.
4.
The aim of this work was to evaluate the thixoformability of Al-(2 to 7 wt%) Si–Cu alloys by differential thermal analysis (DTA), differential scanning calorimetry (DSC) and CALPHAD simulation. Thermoanalytical data were generated for exothermic (rheocasting) and endothermic (thixoforming) cycles under different kinetic conditions (heating and cooling rates of 5, 10, 15, 20 and 25 °C/min). The findings indicate that the SSM critical temperatures and liquid fractions are directly affected by the kinetic conditions, chemical composition and heat-flow direction and that the measured values of these critical temperatures and liquid fractions vary according to the thermodynamic evaluation technique used (Calphad simulation, DSC or DTA). The SSM working window (a) became smaller as the heating/cooling rates and Si content increased; (b) was larger for rheocasting (solidification) than for thixoforming (melting) operations; (c) was on average approximately 12 °C wider and covered a range of mass fractions approximately 0.12 greater for DSC measurements than for DTA measurements; and (d) had a low sensitivity for all the conditions analyzed, indicating the thermodynamic stability of the Al–Si–Cu system. CALPHAD simulation successfully predicted several transformations and the thermodynamic behavior of the temperatures and liquid fractions analyzed. The DTA and DSC techniques yielded discrepant results for some of the critical points investigated, such as the limits of the SSM working window. The majority of the DSC cycles were more sensitive to variations in kinetic conditions, heat-flow direction and chemical composition than the corresponding DTA cycles. Furthermore, the tertiary Al2Cu phase transformation could not be identified in many of the DTA cycles. For these reasons, DTA should be used with caution when predicting the thermodynamic behavior of potential raw materials for SSM processing.  相似文献   

5.
Currently, there is a tendency towards breaking through conventional 5000 series aluminum alloys framework and designing heat-treatable Al–Mg based alloys with the improved mechanical properties. Here, based on a small amount of experimental work and our previously developed Integrated Computational Materials Engineering (ICME) framework, the authors systematically and efficiently optimize the Zn content and two-step aging treatment process in the heat-treatable Al–Mg–Zn alloys. It is found that the addition of 3.0 wt.% Zn can lower the nucleation activation energy, promote the precipitation of the T phase, and thus enhance and accelerate the age-hardening response of Al–Mg–Zn alloys. Different from the single-step aging process, the pre-aging treatment leads to a large number of fine and dispersive T precipitates due to the precipitation of numerous, stable and dispersive precursors. Further, we optimized two-stage aging treatment for the Al-5.1Mg-3.0Zn alloy which enables the peak-aged yield strength to increase by 21.1% as compared to that in the single-step aging process. This research presents an efficient strategy to design new-generation aluminum alloys via combining the key experimental data and an ICME framework.  相似文献   

6.
7.
Based on special quasirandom structures (SQS’s) and first-principles calculations, enthalpies of mixing have been predicted for four binary fcc solid solutions in the Al–Cu, Al–Si, Cu–Si, and Mg–Si systems at nine compositions (x=0.0625x=0.0625, 0.125, 0.1875, 0.25, 0.5, 0.75, 0.8125, 0.875, 0.9375, where xx is the mole fraction of A atoms in the A–B binary system). The present results are compared with previous first-principles calculations and thermodynamic modeling results available in the literature. In order to provide insight into the understanding of mixing behavior for these solid solutions, the spatial charge density distributions in these binary solid solutions are also analyzed. The results obtained herein indicate that the SQS model can be used to estimate the thermodynamic properties of solid solutions, especially for metastable phases, the thermodynamic qualities of which are rarely measured.  相似文献   

8.
Diffusional mobility for fcc phase of the Al–Mg and Al–Mg–Zn systems was critically assessed by using the DICTRA software (Diffusion Controlled Transformation). Good agreement was obtained from comprehensive comparisons between the calculated and experimental diffusion coefficients. The developed mobility database enables reasonable prediction of diffusion and solidification behaviours resulting from interdiffusion, such as concentration profile of diffusion couples and solidification curve of the Al–Mg alloys.  相似文献   

9.
An atomic mobility database was established for the ternary HCP Mg–Li–Al system as a part of an ongoing effort to enable rapid development of novel lightweight Mg alloys. Three sets of three diffusion couples were assembled and annealed at temperatures ranging from 400 to 500 °C. Li concentration profiles were measured using a combination of Auger electron spectroscopy (AES) and inductively coupled plasma optical emission spectrometry (ICP-OES), while Al composition profiles were acquired using electron probe microanalysis (EPMA). The forward-simulation analysis (FSA) was employed to extract both interdiffusion and impurity diffusion coefficients from the collected experimental composition profiles. These measured diffusivity data were used to assess and iteratively optimize mobility parameters for the Mg–Li–Al system using the diffusion module within the Thermo-Calc Software package (DICTRA). The reliability of the assessed mobility parameters was further confirmed by two validation diffusion couples that were annealed at 425 and 475 °C for 96 and 48 h, respectively. It was observed that additions of Li increased the diffusivity of Al in HCP Mg, whereas additions of Al decreased the diffusivity of Li in HCP Mg.  相似文献   

10.
11.
Various experimentally measured diffusivities of fcc Al–Mg, Cu–Mg and Al–Cu–Mg alloys available in the literature are critically reviewed in the present work. The first-principles calculations coupled with a semi-empirical correlation is employed to derive the temperature dependence of impurity diffusivity for Mg in fcc Cu. Atomic mobilities for the above fcc alloys are then evaluated as a function of temperature and composition by means of DICTRA (DIffusion Controlled TRAnsformation) software. Comprehensive comparisons between calculated and measured diffusivities show that most of the experimental data can be well reproduced by the presently obtained atomic mobilities. The concentration profiles and diffusion paths are predicted with the mobility parameters in a series of binary and ternary diffusion couples. A good agreement is obtained between experiment and simulation.  相似文献   

12.
13.
All available thermodynamic and phase diagram data of the binary Al–Bi and Al–Sb systems and ternary Mg–Al–Bi and Mg–Al–Sb systems were critically evaluated, and all reliable data were used simultaneously to obtain the best set of the model parameters for each ternary system. The Modified Quasichemical Model used for the liquid solution shows a high predictive capacity for the ternary systems. The ternary liquid miscibility gaps in the Mg–Al–Bi and Mg–Al–Sb systems resulting from the ordering behaviour of the liquid solutions can be well reproduced with one additional ternary parameter. Using the optimized model parameters, the experimentally unexplored portions of the Mg–Al–Bi and Mg–Al–Sb ternary phase diagrams were more reasonably predicted. All calculations were performed using the FactSage thermochemical software package.  相似文献   

14.
The X-ray diffraction, Scanning Electron Microscopy, Differential Scanning Calorimetry, dilatometric and electrical conductivity measurements were used to study the structural and physicochemical properties of selected silver-rich alloys from Ag–Al system. All the studied alloys, containing from 10 to 37 at. % of Al (Ag90Al10, Ag85Al15, Ag77Al23, Ag75Al25, Ag72Al28, Ag70Al30, Ag63Al37), were prepared from high purity metals by melting in a glove-box filled with a high purity argon atmosphere. The obtained X-ray diffraction patterns and microstructure observation of alloys containing up to 15 at. % of Al suggested that in this range only solid solution of silver exists. The thermal analysis showed heat effects related to phase transitions in Ag–Al system. In addition, the thermal expansion studies revealed an anomalous behavior in expansion for some composition of alloys associated with the phase transition. The electrical conductivity values rapidly changed, which may be associated with the formation of different phase areas in the Ag–Al system.Based on the results obtained in this work and critically reviewed literature data a thermodynamic re-optimization of the binary Ag–Al system using CALPHAD method was proposed. A good agreement between calculation and experiment was found.  相似文献   

15.
16.
17.
18.
The phase equilibria in the Mg-rich region of the Mg–Nd–Sr ternary system at 300 and 350 °C were established using equilibrated-sample method. Powder X-ray diffraction (XRD) technique and scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS) were used for phase composition determination. Four three-phase equilibria and four two-phase equilibria have been experimentally determined at both isothermal sections of 300 and 350 °C. The phase equilibria relationships in the Mg-rich side were studied. The major invariant reaction temperatures of vertical sections with 80 at. % Mg and 10 at. % Sr were determined with differential scanning calorimetry (DSC) test. Moreover, thermodynamic modeling of Mg–Nd–Sr ternary system has been carried out by CALPHAD method based on the present key experimental results. The liquid solution was described using the modified quasi-chemical model in the pair approximation (MQMPA). The compound energy formalism (CEF) was used for the solid phases. The present obtained thermodynamic database of Mg–Nd–Sr ternary system will provide an important support for the Mg-based biodegradable implant development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号