首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In this article, we report on a water‐soluble self‐assembled system that consisted of an acrylamide (AM)‐based copolymer and a nonionic surfactant for enhancing oil recovery. The copolymer, denoted as poly(acrylamide–acrylic acid–diallyl dimethyl ammonium chloride–N ‐allyl benzamide) (PMADN), was synthesized with AM, acrylic acid, diallyl dimethyl ammonium chloride, and N ‐allyl benzamide, and the nonionic surfactant was Tween 40. The results of our investigation of the ratio of the copolymer to Tween 40 show that the optimal concentrations of PMADN and Tween 40 were 1000 and 500 mg/L, respectively. When it was heated to 115–120 °C for 15 min, the apparent viscosity of the self‐assembly system increased 19.2%, and its viscosity retention rate remained at 11.6% under 1000 s?1. When the system was dissolved in 12,000 mg/L NaCl, 2000 mg/L CaCl2, and 2000 mg/L MgCl2 solutions, the viscosity retention rates were 22.3%, 12.1%, and 17.6%, respectively. In addition, a 2000 mg/L PMADN–Tween 40 solution dramatically enhanced the oil recovery up to 13.4%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45202.  相似文献   

2.
    
Hyperbranched poly(amido amine) demulsifier (PDDM) was synthesized by a modified “one-pot” method with 4,4-diaminodiphenyl methane as the central core and ethylenediamine as the interior branches. The structure of the demulsifier was confirmed by proton nuclear magnetic resonance and Fourier transform infrared. The effects of the temperature and PDDM concentration on the demulsification performance were investigated, and PDDM performance was compared to that of the hyperbranched demulsifier with 1,3-propanediamine as the central core. When the emulsions were treated with the demulsifier concentration of 50 mg L−1 at 60 °C for 120 min, the light transmittance and removed total organic content of the aqueous phase reached 87.4 and 99.72%, respectively. At the optimal demulsification temperature of 60 °C, the surface tension reduction and the critical micelle concentration were 27.38 mN m−1 and 1.30 × 10−3 mol L−1, respectively. The combination of surface tension and interfacial tension measurements and the analysis of micrographs and particles sizes provide evidence for the possible demulsification mechanism. The excellent demulsification performance of the hyperbranched demulsifier indicates that it has great potential for use in the demulsification of oil-in-water emulsions. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48846.  相似文献   

3.
    
In order to enhance oil recovery from high‐salinity reservoirs, a series of cationic gemini surfactants with different hydrophobic tails were synthesized. The surfactants were characterized by elemental analysis, infrared spectroscopy, mass spectrometry, and 1H‐NMR. According to the requirements of surfactants used in enhanced oil recovery technology, physicochemical properties including surface tension, critical micelle concentration (CMC), contact angle, oil/water interfacial tension, and compatibility with formation water were fully studied. All cationic gemini surfactants have significant impact on the wettability of the oil‐wet surface, and the contact angle decreased remarkably from 98° to 33° after adding the gemini surfactant BA‐14. Under the condition of solution salinity of 65,430 mg/L, the cationic gemini surfactant BA‐14 reduces the interfacial tension to 10?3 mN/m. Other related tests, including salt tolerance, adsorption, and flooding experiments, have been done. The concentration of 0.1% BA‐14 remains transparent with 120 g/L salinity at 50 °C. The adsorption capacity of BA‐14 is 6.3–11.5 mg/g. The gemini surfactant BA‐14 can improve the oil displacement efficiency by 11.09%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46086.  相似文献   

4.
Thermal oxidative aging and other chemical-induced degradation greatly affect the service life of elastomer components. In this article, we presented a strategy to predict the long-term mechanical behavior of elastomeric components, to foresee the failure of elastomer components in design stage. The accumulation and consumption of small molecule reactants in elastomers are described using a diffusion–reaction process. Free-volume theory is applied to consider the diffusivity change during this process. Degradation of elastomers under elevated temperature up to 500 K, environmental pressure up to 4 atm, and different cross-link densities are studied in this simulation. Methodology of prediction of mechanical behavior is proposed based on the affined network model.  相似文献   

5.
    
The influence of polymer on stability and shear rate on droplet size of emulsion is evaluated in the laboratory, microstructure of the emulsion is observed under a microscope, and the pore distribution of the cores is analyzed through mercury injection experiments. In the process of surfactant‐polymer (SP) flooding, the thickness of polymer absorbed on the surface of the rock is calculated by a mathematical model. The experiments show that the polymer is good for the stability of emulsion, with the increase of shear rate, stability becomes better, and droplet size gets smaller. Due to the adsorption of polymer, the pore throat turns narrow, seepage velocity is increasing, and also the emulsion becomes more stable with the smaller‐size droplets. During the single emulsifier flooding, the emulsion is easy to coalescence for its instability, and the seepage channel can be easily blocked, which leads to the high injection pressure. Consequently, the polymer plays an important role on emulsion stability in SP flooding. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42171.  相似文献   

6.
    
During extraction of crude oil, water is generally present in the oil. This water‐in‐oil (w/o) mixture undergoes turbulent flow that promotes sheer forces, resulting in the appearance of emulsions. These emulsions can be highly stable due to the presence of compounds with polar characteristics such as asphaltenes, which act as natural emulsifiers and form resistant films at the oil–water interface. Nonionic surfactants based on polyoxides are widely used to prevent the formation or to break down w/o emulsions. To shed more light on the destabilization mechanism of w/o emulsions promoted by these surfactants, in this study the techniques of tensiometry and Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR‐ATR) were applied to study the interface formed by poly(ethylene oxide)‐poly(propylene oxide) (PEO‐PPO) block copolymers and asphaltenic petroleum fractions. Initially, the critical micelle concentration of the copolymers in aqueous solution was determined. The results agreed with those found by tensiometry. The bottle test was used to evaluate the break‐down of the w/o emulsions in the presence of the PEO‐PPO block copolymers, and the results presented good agreement with those obtained by tensiometry and FTIR‐ATR. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
    
The effects of different types of polymers, partially hydrolyzed polyacrylamide (HPAM) and hydrophobically modified polyacrylamide (HMPAM), on dynamic interfacial tensions (IFTs) of surfactant/model oil systems have been investigated by the spinning drop method in this article. Two anionic surfactants, 1,2‐dihexyl‐4‐propylbenzene sulfonate (366), 1,4‐dibutyl‐2‐nonylbenzene sulfonate (494) and an anionic–nonionic surfactant octyl‐[ω‐alkyloxy‐poly(oxyethylene)]yl‐benzene sulfonates (828) with high purity were selected as model surfactants. The influences of polymer concentration on IFT were expounded. It was found that the addition of polymer mostly results in increasing IFT because the interfacial molecular arrangement is modified owing to the interaction between polymer and surfactants. For HPAM, the polymer chains will enter the surfactant adsorption layer to form mixed‐adsorption layer. Therefore, HPAM shows strong effect on surfactant molecules with large size, such as 366. Conversely, surfactants can interact with the hydrophobic blocks of HMPAM and form mixed micelle‐like associations at interface. As a result, HMPAM shows more impact on IFT of 494 due to small steric hindrance for the formation of interfacial associations. This mechanism has been ensured by 828 molecules with two long alkyl chains. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40562.  相似文献   

8.
    
With the purpose of investigating new potential candidates for enhanced oil recovery (EOR), amphiphilic copolymers based on Poly(ethylene glycol) methyl ether acrylate (PEGA) have been prepared by Atom Transfer Radical Polymerization (ATRP). A P(PEGA) homopolymer, a block copolymer with styrene PS‐b‐P(PEGA), and an analogous terpolymer including also sodium methacrylate (MANa) in the poly(PEGA) (PPEGA) block, PS‐b‐P(PEGA‐co‐MANa) have been prepared and characterized. Viscosity and surface activity of solutions of the prepared polymers in pure and salty water have been measured and the results have been interpreted in terms of the chemical structures of the systems. A clear influence of the presence of the charged MANa moieties has been observed in both rheological and interfacial properties. The PS‐b‐P(PEGA‐co‐MANa) terpolymer, being an effective surface active viscosifying agent, is a good candidate as polymeric surfactant for applications in enhanced oil recovery and related. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44100.  相似文献   

9.
    
A new cationic gemini surfactant (C25‐6‐C25), which had a special structure consisting of ultra‐long hydrophobic chains and amide groups, was synthesized using a main feedstock source obtained from rapeseed for thickening purposes. The 12 mmol L?1 C25‐6‐C25 fluid containing 0.19 mol L?1 potassium chloride (KCl) exhibited highly elastic properties at the angular frequency of 0.04–10 rad s?1. Its viscosity could be maintained at 55 mPa s for 1.5 h under a shear rate of 170 s?1 at 110 °C and it also showed a good proppant‐suspending property. C25‐6‐C25/KCl fluid exhibited high viscoelasticity and good performance, which were attributed to intermolecular forces, hydrogen bonding, and the shielding effect of electrostatic repulsion by KCl. Thus, C25‐6‐C25 is a very promising candidate for fracturing. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44602.  相似文献   

10.
    
Partially hydrolyzed polyacrylamide (PHPA) is the most widely used polymer in enhanced oil recovery (EOR) applications. However, under conditions of high temperature and salinity, the PHPA molecules become hydrolyzed, causing a drastic reduction of the viscosity of the polymer solution due to the presence of negative charges, making the molecules more susceptible to interactions with cations. In this sense, in order to increase the stability of these polymers, an anionic monomer more resistant to cations such as 2-acrylamido-2-methylpropane sulfonic acid (AMPS) has been incorporated into the HPAM molecules. This work evaluated the thermal stability of a copolymer (acrylamide and AMPS - AN125) and a terpolymer (acrylamide, acrylate, and AMPS-FP5115) in the time course of 360 days. The tests were carried out in typical conditions of Brazilian offshore reservoirs, such as absence of oxygen, high temperature, and high salt concentration. The test method involved measurements of intrinsic viscosity in function of time and determination of the hydrolysis degree of the polymers by elemental analysis. The copolymer AN125 was more stable under the test conditions than the terpolymer FP 5115 due to the presence of a higher concentration of AMPS in the copolymer. The AMPS group was hydrolyzed to AA at a temperature of 100 °C, however, the increase in salt concentration delayed the onset of this degradation. The tests indicated that the presence of a higher AMPS content in the copolymer does not prevent the polymer from undergoing hydrolysis, but delays the polymer precipitation step in the solution.  相似文献   

11.
    
Asphaltenes are considered the main agents responsible for stabilizing petroleum emulsions. However, due to the complex chemical nature of crude oil, it is necessary to extract these molecules and prepare model solutions to investigate the effects of the various asphaltenes separately. In this study, the demulsification efficiency of oil‐in‐water (O/W) nanoemulsions based on silicone polyethers was evaluated using asphaltene model emulsions. The interfacial properties of the model emulsions were evaluated, with and without the presence of the nanoemulsions, by interfacial tension and inerfacial rheology measurements and correlating them with the ability and/or speed of diffusion to the interface. Dispersion/flocculation tests of the asphaltenes were performed to assess whether the nanoemulsions were modifying the aggregation state of the asphaltenes during the process of destabilizing the model emulsions. Through the interfacial rheology tests of the model asphaltene/saltwater system, with or without addition of the systems used in the demulsification tests, it was possible to determine the influence of the nanoemulsions on the mechanical properties of the interfacial film. The results of the water/oil gravitational separation tests showed that the nanoemulsions had separation efficiency between 80 and 95%, depending on the composition of the water/surfactant/oil/asphaltene system. The nanoemulsions containing xylene as the oil phase destabilized the emulsions the fastest. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44174.  相似文献   

12.
    
CO2 foam for enhanced oil‐recovery applications has been traditionally used in order to address mobility‐control problems that occur during CO2 flooding. However, the supercritical CO2 foam generated by surfactant has a few shortcomings, such as loss of surfactant to the formation due to adsorption and lack of a stable front in the presence of crude oil. These problems arise because surfactants dynamically leave and enter the foam interface. We discuss the addition of polyelectrolytes and polyelectrolyte complex nanoparticles (PECNP) to the surfactant solution to stabilize the interface using electrostatic forces to generate stronger and longer‐lasting foams. An optimized ratio and pH of the polyelectrolytes was used to generate the nanoparticles. Thereafter we studied the interaction of the polyelectrolyte–surfactant CO2 foam and the polyelectrolyte complex nanoparticle–surfactant CO2 foam with crude oil in a high‐pressure, high‐temperature static view cell. The nanoparticle–surfactant CO2 foam system was found to be more durable in the presence of crude oil. Understanding the rheology of the foam becomes crucial in determining the effect of shear on the viscosity of the foam. A high‐pressure, high‐temperature rheometer setup was used to shear the CO2 foam for the three different systems, and the viscosity was measured with time. It was found that the viscosity of the CO2 foams generated by these new systems of polyelectrolytes was slightly better than the surfactant‐generated CO2 foams. Core‐flood experiments were conducted in the absence and presence of crude oil to understand the foam mobility and the oil recovered. The core‐flood experiments in the presence of crude oil show promising results for the CO2 foams generated by nanoparticle–surfactant and polyelectrolyte–surfactant systems. This paper also reviews the extent of damage, if any, that could be caused by the injection of nanoparticles. It was observed that the PECNP–surfactant system produced 58.33% of the residual oil, while the surfactant system itself produced 47.6% of the residual oil in place. Most importantly, the PECNP system produced 9.1% of the oil left after the core was flooded with the surfactant foam system. This proves that the PECNP system was able to extract more oil from the core when the surfactant foam system was already injected. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44491.  相似文献   

13.
    
Oil in water (o/w) nanoemulsions were synthesized in order to be evaluated as an alternative to petroleum emulsions destabilization processes and inhibition of foam formed in the crude oil. The nanoemulsions were prepared by the high energy method through High Pressure Homogenizer (HPH), utilizing poly(propylene glycol) (PPG) and xylene solvent as oil phase and different polarity polyether silicone surfactants samples. These nanoemulsions were evaluated in respect to their efficiency in the petroleum demulsification process. The results of these tests showed that nanoemulsions performance on the destabilization of petroleum emulsions is influenced by the utilized surfactant's polarity. The nanoemulsions and pure samples of PPG and xylene solvent were evaluated concerning capacity of formed foam inhibition in petroleum (antifoam test), and the results showed no significant influence of samples on foam stability. Petroleum/saline water added interfacial tension measurements, added or not the nanoemulsions were executed and showed that the additives adsorption in the interface is related to the surfactant's polarity and nanoemulsion drop size. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40889.  相似文献   

14.
    
A novel nonionic surfmer, AGE‐TX‐100, was synthesized by the epoxide ring‐opening reaction of allyl glycidyl ether and polyoxyethylene (10) octylphenyl ether (TX‐100). Then a novel copolymer, acrylamide (AM)/acrylic acid (AA)/AGE‐TX‐100, was synthesized with AM, AA, and AGE‐TX‐100 in aqueous solution through free‐radical random polymerization. The structures of the novel surfmer and copolymer were characterized by IR and 1H‐NMR. The results of the salt‐resistance tests and the rheological tests indicate that the copolymer had good salt tolerance, thermal stability at high temperatures, and shearing resistance under high shear rates. The environmental scanning electron micrographs showed that the copolymer could form a tighter three‐dimensional network structure than partially hydrolyzed polyacrylamide (HPAM) in aqueous solution. Compared with the HPAM solution, the copolymer solution showed a good ability to emulsify organic components. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41024.  相似文献   

15.
加油站油气综合治理技术及工艺设计   总被引:2,自引:0,他引:2  
沈家成  赵海全 《广州化工》2010,38(5):246-247
本文简述了加油站油气回收的重要意义,分析了国内外加油站油气排放治理现状,详细介绍油气前处理和后出理的各自重要性。提出了加油站整套油气回收工艺的设计方案并应用于实际,指出了在实施油气回收系统时应注意的问题。结果表明加油站应用油气回收技术成效明显,具有环保、节能、安全多重功效。  相似文献   

16.
浅谈老化油回收处理的技术   总被引:3,自引:0,他引:3  
薛强  王鉴 《内蒙古石油化工》2008,34(2):19-21,28
老化油的及时回收与高效处理,对于节约能源,减轻污水处理和集输系统的压力,解决污水水质恶化等问题,具有重要意义。作者通过对电场处理、热重力沉降、离心分离、超声波处理和生物处理等老化油处理技术的原理、特点及适用情况进行了阐述和探讨,指出超声波处理技术具有处理效果好、处理量大、处理时间短、设备简单、能耗低、节约药剂的特点,在这一领域具有广阔的应用前景;离心分离技术适用于海上平台等领域,并展望了未来。  相似文献   

17.
    
The stability and durability of hydrogenated nitrile butadiene rubber (HNBR) material in crude oil environments are of great importance for petroleum equipment to resist leakage and to ensure reliability. In this paper, an HNBR material was fabricated, and the degradation of the HNBR material was investigated in simulated crude oil environments. One crude oil and three temperatures (50 °C, 75 °C, and 100 °C, based on actual crude oil operations, were used in this study. Weight changes for the HNBR specimens were monitored after exposure to the environments over time. Optical microscopy was used to show the topographical changes on the specimen surfaces. Attenuated total reflection Fourier transform infrared (ATR‐FTIR) spectroscopy was employed to study the surface chemistry of the HNBR material before and after exposure to the simulated crude oil environments at selected times. Mechanical property tests (tensile and compressive stress–strain tests, tear strength test, and compression set test) were conducted to assess the changes in mechanical properties of the HNBR specimens before and after exposure to the environments. The test results show that the physical–mechanical properties of the HNBR material changed significantly. The temperature and the crude oil had a direct effect on the degradation of the mechanical properties. The ATR‐FTIR test results indicate that the surface chemistry changed via chain crosslinking in the material after exposure to the environments over time. The degradation mechanisms of the HNBR material after exposure to the crude oil could be due to the presence of chain crosslinking, chain mobility, and backbone scission. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44012.  相似文献   

18.
《云南化工》2018,(12):137-139
在我国经济发展过程中,油气运输具有重要作用,为我国的发展提供能源支撑。现阶段,为了合理的分配油气等燃料物质,我国主要采取管道运输的方式来实现油气的储备与运输。在储运过程中,由于油气容易受到周边环境的影响,且本身具有氧化物质,容易出现管道腐蚀等现象。所以,在油气燃料物质储运过程中,必须做好管道防腐工作,不断改良输送管道,有效提升油气燃料的安全性,促进我国经济的快速发展。  相似文献   

19.
表面活性剂在油气开采和集输中的应用及前景   总被引:6,自引:0,他引:6  
从表面活性剂在油气开采中的作用入手,分析和总结了氟碳表面活性剂在石油工业上、中游中的应用,并展望了几类新型结构的氟碳表面活性剂的发展前景。  相似文献   

20.
Colloidal gas aphrons (CGAs), generated from dilute solutions of four surfactants, were used to clarify palm oil mill effluent (POME), suspensions of microalgae and suspensions of three inorganic minerals. In POME and the algal suspensions, each CGA was most effective at a pH value close to the pK value of the surfactant concerned. This effect was not tested in the inorganic suspensions. The efficiency of air utilization was directly related to the concentration of solids in the suspensions, the size, density and nature of the solids having secondary effects. Comparison with data in the literature led to a general correlation embracing a variety of suspensions and flotation systems. Shedding of collected material from the foam layer was also a direct function of solids concentration. CGAs offer advantages over other systems of air-assisted flotation in relation to the requirements for equipment and to the management of process operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号