首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大容量锂离子电池储能系统对完善传统电网和高效利用新能源都具有非常重要的作用。为了实现大容量锂离子电池储能系统的高倍率化、长寿命化以及高安全性,高性能电池热管理系统的研发刻不容缓。本文总结了温度对锂离子电池性能的影响规律,综述了空冷、液冷、热管冷却、相变冷却这4种典型热管理技术的研究概况,分析了热管理技术在锂离子电池储能系统中的应用与研究状况。随着锂离子电池储能系统工作倍率的提高,产热量随之增大,对热管理系统的要求也越来越高。下一步的研究工作应围绕空冷系统优化、基于新型冷却介质的液冷系统、经济型热管及多目标优化设计这4方面展开。  相似文献   

2.
In this paper we perform a cost analysis of different types of energy storage technologies. We evaluate eleven storage technologies, including lead-acid, sodium–sulfur, nickel–cadmium, and lithium-ion batteries, superconducting magnetic energy storage, electrochemical capacitors, flywheels, flow batteries, pumped hydro and compressed air energy storage systems. We perform economic analysis for key applications associated with a wind farm integrated into the electric grid, including load shifting, frequency support, and power quality. We identify the key characteristics that affect the economic viability for these technologies, perform sensitivity analyses based on key performance criteria and find improvement areas that could make them more competitive in the near future.  相似文献   

3.
锂离子动力电池的回收是当前储能产业关注的焦点之一,为了解锂离子动力电池的回收现状,以CNABS和DWPI专利数据库中的检索结果为分析样本,对锂离子动力电池回收技术的专利申请量趋势、全球分布区域、国内外主要申请人、全球重点技术分布以及国内重点技术进行全面分析,结果表明,虽然锂离子动力电池回收技术是目前全球尤其是中国争相布局的产业对象,但目前各个企业的专利申请量均较小且技术布局零散,总体来说锂离子动力电池回收技术仍处于摸索阶段,产业前景不明,本文以期给锂离子动力电池回收技术未来的布局和发展提供一定的借鉴。  相似文献   

4.
锂离子电容器属于非对称型超级电容器,通常由电池型负极和电容型正极共同置于有机锂盐溶液中组装而成,兼具超级电容器的高功率特性和锂离子电池的高能量密度,在智能电网、轨道交通、新能源汽车等多个领域具有广阔的应用前景。炭材料由于来源广泛、价格低廉、性能稳定,是锂离子电容器的首选电极材料。因此,炭基锂离子电容器具有竞争性的产业化前景。负极预嵌锂技术对于炭基锂离子电容器的电化学性能具有决定性影响。本文从锂源引入位置的角度,系统回顾了锂离子电容器负极预嵌锂技术的进展情况,并就负极预嵌锂过程中的关键控制因素做了梳理,有助于全面了解负极预嵌锂技术的研究现状,为锂离子电容器的进一步发展提供科学参考。  相似文献   

5.
有源逆变技术是将直流电能变为交流电能并回馈至电网,从而实现电能回收利用的技术,是电源性能测试中的最新技术手段.文中对大功率电子负载技术中的核心技术——有源逆变并联技术的研究现状和发展进行了介绍.  相似文献   

6.
Since they were first introduced in the early 1990s, lithium-ion batteries have enjoyed unprecedented growth and success in the consumer marketplace. Combining excellent performance with affordability, they have become the product of choice for portable computers and cellular phones. Building on the same energy and life cycle attributes which marked their consumer market success, but adding new high power storage capability, lithium-ion technology is now poised to play a similar role in the transportation sector. With major programmes in both high capacity and high power lithium-ion technology, Saft has developed a family of products which can address the power and energy storage needs for vehicles, utilities, aviation, satellites, and other applications where light weight, long life, and excellent energy or power storage capabilities are needed. Although further development and refinements are underway, Saft has made a major commitment to bring this technology to the market with the establishment of a major pilot and research facility in Bordeaux France. This paper discusses the performance of this family of products and their potential applications.  相似文献   

7.
简述了电动汽车锂离子动力电池热失控蔓延机理、建模与抑制技术的最新研究进展。为了满足汽车高能量的要求,需要动力电池进行串并联成组来提供动力。电池组成组安全问题成为电动汽车大规模应用的重要技术问题。电池组中的某一个电池单体发生热失控后产生大量热,导致周围电池单体受热产生热失控。因而,电池组成组安全问题的重要关注点是电池组内的热失控蔓延问题。本文对锂离子电池热失控蔓延问题的国内外研究进展进行了综述,分析了对于不同种类锂离子动力电池影响其热失控蔓延特性的主要因素。总结了文献中的热失控蔓延建模方法,并指出了已有方法的不足。从电池系统热安全管理的角度,阐述并分析了热失控蔓延防控技术的研究成果与方向。最后对锂离子电池热失控蔓延研究进行了展望。  相似文献   

8.
介绍了网格计算的概念、特点、体系结构,重点分析了网格技术在电力系统继电保护中的应用前景,结果表明,网格具有强大的计算能力与资源共享性,能为各种新型保护原理的应用提供技术平台。提出了电力网格的体系与结构,以及建立电力网格保护系统所涉及的关键技术。  相似文献   

9.
《Journal of power sources》2006,161(1):594-600
We are conducting cycle-life testing of 10–100 Ah-class lithium-ion cells in a simulated satellite operation at the Japan Aerospace Exploration Agency (JAXA). This paper reviews the latest test results of these lithium-ion cells. Thus far, we have verified impressive life performance exceeding 30,000 cycles in a simulated low-earth-orbit (LEO) mode and 1800 cycles in a simulated geostationary-earth-orbit (GEO) mode for some of these cells. We optimized the thickness of the electrode layer to suppress cell-internal impedance and found that a lithium-ion cell with a thin electrode layer exhibited promising cycling performance in a simulated LEO operation. Since the electrode material is an important factor affecting the charge–discharge behavior of a lithium-ion cell, we also compared the cycling performance of lithium-ion cells with different cathode materials.  相似文献   

10.
With the growth of wind energy conversion systems (WECSs), various technologies are developed for them. Permanent-magnet synchronous generators (PMSGs) are used by these technologies due to special characteristics of PMSGs such as low weight and volume, high performance, and the elimination of the gearbox. In this paper, a new variable-speed WECS with a PMSG and $Z$-source inverter is proposed. Characteristics of $Z$-source inverter are used for maximum power tracking control and delivering power to the grid, simultaneously. Two control methods are proposed for delivering power to the grid: Capacitor voltage control and dc-link voltage control. Operation of system with these methods is compared from the viewpoint of power quality and total switching device power (TSDP). In addition, TSDP, current ripple of inductor, performance, and total harmonic distortion of grid current of proposed system is compared with traditional wind energy system with a boost converter.   相似文献   

11.
近年来,锂离子电池在储能电站调频领域得到了飞速发展。为满足调频电站的电压和功率要求,需将大量电池单体进行串联,如此产生的电池组串联不一致性问题,以及调频过程中高倍率和频繁切换充放电状态对不一致性程度的加剧,严重影响电池组的使用寿命和安全性能。针对上述问题,本文基于调频储能串联锂离子电池模组不一致性问题的形成原因,归纳分析用于改善电池组串联不一致性问题的均衡技术和均衡策略。其中,均衡拓扑结构按能量流向角度进行分类梳理,均衡控制策略则基于均衡的不同目标进行优劣分析。在此基础上对锂离子调频电池模组均衡技术的发展趋势进行展望。  相似文献   

12.
There is a growing need to explore path dependence of aging processes in batteries developed for long-term usage, such as lithium-ion cells used in hybrid electric vehicle (HEV) or plug-in hybrid vehicle (PHEV) applications that may then be “retired” to be utilized in grid applications. To better understand the foremost influences on path dependence in the PHEV context, this work aims to bridge the gap between ideal laboratory test conditions and PHEV field conditions by isolating the predominant aging factors in PHEV service, which would include, for example, the nature and frequency of duty cycles, as well as the frequency and severity of thermal cycles. These factors are studied in controlled and repeatable laboratory conditions to facilitate mechanistic evaluation of aging processes. This work is a collaboration between Idaho National Laboratory (INL) and the Hawaii Natural Energy Institute (HNEI). Commercial lithium-ion cells of the Sanyo Y type (18650 configuration) are used in this work covering two initial independent studies of path dependence issues. The first study considers how the magnitude of power pulses and charging rates affect the aging rate, while the second seeks to answer whether thermal cycling has an accelerating effect on cell aging. While this work is in early stages of testing, initial data trends show that cell aging is indeed accelerated under conditions of high discharge pulse power, higher charge rates, and thermal cycling. Such information is useful in developing accurate predictive models for estimating end-of-life conditions.  相似文献   

13.
锂离子液流电池将锂离子电池的工作原理与传统液流电池的结构特点相结合,是一种正处于基础技术开发阶段的新型电化学储能电池技术,具有输出功率和储能容量彼此独立、成本较低等特点,适用于未来电网储能领域。电极悬浮液作为实现锂离子液流电池充放电功能的主体材料,其导电性能和流动性能是影响锂离子液流电池倍率特性和能量密度的重要因素。论文结合实验数据对该方向面临的主要技术问题及研究重点进行了分析,认为电极悬浮液的研究需要从导电机理、质量比容量、流变性能等方面进一步深入研究,并建立标准评价体系。  相似文献   

14.
As the contribution of electricity generated from renewable sources (wind, wave and solar) grows, the inherent intermittency of supply from such generating technologies must be addressed by a step-change in energy storage. Furthermore, the continuously developing demands of contemporary applications require the design of versatile energy-storage/power supply systems offering wide ranges of power density and energy density. As no single energy-storage technology has this capability, systems will comprise combinations of technologies such as electrochemical supercapacitors, flow batteries, lithium-ion batteries, superconducting magnetic energy storage (SMES) and kinetic energy storage. The evolution of the electrochemical supercapacitor is largely dependent on the development of optimised electrode materials (tailored to the chosen electrolyte) and electrolytes. Similarly, the development of lithium-ion battery technology requires fundamental research in materials science aimed at delivering new electrodes and electrolytes. Lithium-ion technology has significant potential, and a step-change is required in order to promote the technology from the portable electronics market into high-duty applications. Flow-battery development is largely concerned with safety and operability. However, opportunities exist to improve electrode technology yielding larger power densities. The main barriers to overcome with regard to the development of SMES technology are those related to high-temperature superconductors in terms of their granular, anisotropic nature. Materials development is essential for the successful evolution of flywheel technology. Given the appropriate research effort, the key scientific advances required in order to successfully develop energy-storage technologies generally represent realistic goals that may be achieved by 2050.  相似文献   

15.
随着全球气候变暖的加剧,极端天气气候事件发生频率不断攀升,多种极端气象事件直接影响了电网的安全稳定运行,有必要在电力气象及气象传感监测技术方面开展更多的研究与应用。文章针对高可靠性电力气象数据获取中的传感与监测技术进行了分析,回顾了公共气象传感监测技术的发展情况,介绍了电力气象传感监测技术应用的总体架构,对几类电力气象传感技术的发展及应用情况进行了详细分析说明,并指出了未来电网对气象传感技术新的需求及电力气象传感技术的发展趋势。  相似文献   

16.
With the commercialization of the electric vehicles, the large-scale lithium-ion cells as the power of electric vehicles are to be retired. The second-use of retired cells is of great significance to improve the battery economy. A fast classification and regroup evaluation method of the retired lithium-ion cells are proposed in this paper to improve the classification efficiency of retired lithium-ion cells and adapt to the regroup under different conditions. The lithium-ion cells after being balanced in parallel are charged in series with a constant current. A support vector regression (SVR) model with the parameters optimized by the particle swarm optimization (PSO) algorithm is built for the fast capacity estimation and the error will not exceed 0.3%. Different cells regrouped means different performance. In order to improve the consistency of retired cells and satisfy different using conditions, a Weighted-K-means algorithm is proposed in this paper to regroup the cells with the known capacity and internal resistance. The classification method is evaluated by the voltage consistency of cells using different working conditions, which indicates capacity occupied a large proportion can meet the requirement of energy condition meanwhile keep a good consistency. But the resistance will dominate in algorithm under conditions which have requirement for instantaneous power.  相似文献   

17.
Researchers and engineers toil at discovering new solutions and technologies that could make the recent northeastern U.S blackout a rare occasion in the future. One of the prominent technologies that has captured a great deal of attention is superconducting power cable. Studies by major corporations and organizations have concluded that major investments in the power grid in the United States will be necessary to meet the need for reliable and affordable electric power and that HTS cables could lay a significant role in meeting this need. It is apparent that HTS technology will progressively set the stage for applications in large markets where cost as well as size, weight, efficiency and performance are important.  相似文献   

18.
现有电化学储能锂离子电池系统采用液体电解质,易泄露,易腐蚀,服役寿命短,具有安全隐患.薄膜型全固态锂电池,大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高安全性锂二次电池.作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造,工作原理和性能特征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势.  相似文献   

19.
Fuel cells generate electricity and heat during electrochemical reaction which happens between the oxygen and hydrogen to form the water. Fuel cell technology is a promising way to provide energy for rural areas where there is no access to the public grid or where there is a huge cost of wiring and transferring electricity. In addition, applications with essential secure electrical energy requirement such as uninterruptible power supplies (UPS), power generation stations and distributed systems can employ fuel cells as their source of energy.The current paper includes a comparative study of basic design, working principle, applications, advantages and disadvantages of various technologies available for fuel cells. In addition, techno-economic features of hydrogen fuel cell vehicles (FCV) and internal combustion engine vehicles (ICEV) are compared. The results indicate that fuel cell systems have simple design, high reliability, noiseless operation, high efficiency and less environmental impact. The aim of this paper is to serve as a convenient reference for fuel cell power generation reviews.  相似文献   

20.
Overview on nanostructured membrane in fuel cell applications   总被引:1,自引:0,他引:1  
Fuel cells are expected to soon become a source of low- to zero-emission power generation for applications in portable technologies and electric vehicles. Allowing development of high quality solid electrolytes and production of smaller fuel cells, significant progress has been made in the development of fuel cell membranes using nanotechnology. Nanostructures have been recognized as critical elements to improve the performance of fuel cell membranes. This paper provides an overview of research and development of nanostructured membranes for different fuel cell applications and focuses on improvement of fuel cell membranes by these nanostructures. Theoretical studies using molecular-scale modeling and simulation of fuel cell membranes have also been included in this review. Other issues regarding the technology limitations, research challenges and future trends are also reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号