首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This study focuses on the influence of load and temperature on the formation and stability of tribo-films for bearing steel on bearing steel contacts lubricated with an aviation oil, EXXON Turbo 2380 (TCP based - tricresyl phosphate) at ambient temperatures. Experiments were carried out on a pin-on-disc (POD) tribometer (with a ball-on-flat geometry) under an average loading rate of 0.17 N s−1 and sliding speed of 3 m s−1. The X-ray photoelectron spectroscopy (XPS) analysis on the worn surfaces of ball and disc shows that a tribo-film forms on both surfaces at room temperature. The formation and removal of the tribo-film are faster on the ball due to the nature of contact between the ball and disc. It was found that the tribo-films formed at room temperature are vulnerable to initial disc temperature. The higher the initial temperature the higher the load carrying capacity. The tribo-film growth and contact deterioration have been monitored by acoustic emission (AE) and electrostatic charge (ESP) sensing systems in real time. The results show that both AE and ESP can detect the tribo-film and contact breakdown and have great potential for on-line condition monitoring of lubricated tribo-contacts.  相似文献   

2.
Zinc polyphosphate glasses are the principal component of the antiwear tribofilms formed on steel surfaces in the presence of additives, such as zinc dialkyldithiophosphates. In this work, amorphous, zinc metaphosphate glasses have been synthesized and characterized by means of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), elemental analysis, and X-ray photoelectron spectroscopy (XPS). Tribological tests were performed by rubbing steel balls against the zinc metaphosphate discs in a poly-α-olefin (PAO) bath at room temperature. XPS was used in order to characterize the tribostressed areas on both metaphosphate discs and steel balls. A transfer film, constituted of iron and zinc polyphosphates, was formed on the contact area of the balls. This transfer film was found to reduce friction and prevent ball wear. A reduction in the relative intensities of XPS signals related to bridging-oxygen species and a binding energy shift of 0.4 eV of the P 2p toward lower values demonstrated the presence of shorter-chain-length phosphates inside the tribo-tracks on the discs. Furthermore, iron was transferred to the glass during the tribological tests. A tribochemical reaction between zinc metaphosphate and iron oxide has been proposed as an explanation for the depolymerization of the glass and the formation of iron phosphate.  相似文献   

3.
Under starved conditions the thickness and distribution of the lubricant film in an elastohydrodynamically lubricated (EHL) contact is directly related to the distribution of lubricant on the track in the inlet to the contact. In starved lubricated rolling bearings this lubricant distribution is determined by many effects. The authors have developed a model to predict the oil lost from the track induced by EHL pressure with no replenishment. A complete bearing is modeled with multiple rolling element EHL contacts and with the applied load to the rolling elements varying along the circumference of the bearing. Results of the oil layer thickness on the track are presented for a ball bearing and a spherical roller bearing for different bearing loads and rotational speeds. The predicted layer thickness decay rate for a ball bearing is significantly larger than for a spherical roller bearing and the predicted effect of the bearing load on the decay rate is small compared to the effect of the rotational speed. The predicted decay periods due to the contact pressure effect are small compared to the observed (grease) life of bearings. The results show that a bearing cannot sustain an adequate layer of oil on the running track unless significant replenishment takes place.  相似文献   

4.
Starved lubrication conditions bring the risk of the damage of machine components. The experimental simulation of starved conditions is connected with the need to define the input conditions to joint the amount of the oil entering the contact with the resulting film thickness. This paper describes the experimental approach based on the thickness of the oil layer entering the starved contact. The use of multiple contacts optical test rig based on thin film colorimetric interferometry for film thickness measurement has enabled to simulate starved conditions and to compare the obtained results with theoretical prediction. The first elliptical contact between spherical roller and the glass disc is used to supply the defined oil layer to the second contact formed between the steel ball and the glass disc. Through the comparison with the theoretical prediction it was found that acceptable input conditions for the study of starved contacts can be achieved with such test rig configuration.  相似文献   

5.
The antiwear and extreme‐pressure properties of six different types of additive (molybdenum dialkyldithiophosphate, dibenzyl disulphide, molybdenum dialkyldithiocarbamate, zinc dialkyldithiophosphate, chlorinated paraffin wax, and triaryl phosphate) were evaluated by standard four‐ball friction and wear tests. This was followed by scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), and X‐ray photoelectron imaging (XPI) analyses of the worn surfaces to determine the structure of the boundary lubrication film and the mechanism of the tribochemical reaction occurring during the friction process. The presence of the additives in the base oil significantly increased the weld load and drastically reduced the wear‐scar diameter, suggesting antiwear and extreme‐pressure properties of the additives. The enhanced antiwear and loadcarrying capacity of the additive‐containing oils was attributed to the formation of a complex boundary lubrication film formed between the surfaces during the friction process as a result of the tribochemical reaction. The antiwear and extreme‐pressure properties of the additives were explained based on the XPS data. The studies indicated that the lubricating properties of the additives depend on their chemical nature and reactivity with metal surfaces.  相似文献   

6.
Functional additives, particularly extreme pressure and antiwear additives, in formulated oil will compete to adsorb and function in tribological contacts. A low-polarity commercial base oil, poly-α-olefin (PAO), blended with zinc dialkyl dithiophosphates (ZDDP) has been studied. The tribological performance was evaluated using a ball-on-disk test rig under mixed rolling-sliding conditions in the boundary lubrication regime at 90°C. An adapted in situ interferometry technique was used to monitor the additive-derived reaction layer formation. The thickness of the reaction layer evolves with rubbing until reaching a limiting thickness value of approximately 70 nm. The evolution of the topography and mechanical properties of the ZDDP-derived reaction layer with rubbing time were studied using Atomic Force Microscopy. A constant roughening and hardening of the additive-derived layer with rubbing time is observed and related to the different tribological performance of the layer at different rubbing times.  相似文献   

7.
In this study we investigated the sliding velocity dependency of the coefficient of friction for a Si-containing diamond-like carbon (DLC-Si) film in an automatic transmission fluid (ATF) under a wide range of contact pressures. The DLC-Si film and a nitrided steel with a surface roughness, RzJIS, of around 3.0 μm were used as disk specimens. A high-carbon chromium steel (JIS-SUJ2) bearing ball was used as a ball specimen. Friction tests were conducted using a ball-on-disk friction apparatus under a wide range of sliding velocites (0.1-2.0 m/s) and contact pressures (Pmax: 0.42-3.61 GPa) in ATF. The friction coefficients for the nitrided steel had a tendency to decrease with an increase in sliding veloicity under all the contact pressure conditions; however, the friction coefficients for the DLC-Si film were stable with respect to sliding velocities under all the contatct pressures. These results indicate that the DLC-Si film suppresses the stick-slip motion during sliding againt steel in ATF, which is a desired frictional characteristic for the electromagnetic clutch disks used under lubrication. Furthermore, the DLC-Si film showed a higher wear resistance and lower aggression on the steel ball specimen than the nitrided steel. There were less hydrodynamic effects on the friction coefficient for the DLC-Si film possibly due to maintenance of the initial surface roughness and its poorer wettability with the fluid. X-ray photoelectron spectroscopy (XPS) analysis of the sliding surfaces revealed that the adsorption film derived from the succinimide on the sliding surfaces of the DLC-Si film and the mating steel ball also contributed to the sufficient and less sliding-velocity-dependant friction coefficients.  相似文献   

8.
At very high speeds, elastohydrodynamic (EHD) films may be considerably thinner than is predicted by classical isothermal regression equations such as that due to Dowson and Hamrock. This may arise because of viscous dissipation, shear thinning, frictional heating or starvation.

In this article, the contact between a steel ball and a glass disc over an entrainment speed ranging from 0.05 m s?1 to 20 m s?1 was studied. Two sets of tests were performed. In the preliminary testing, the disc was driven at speeds of up to 20 m s?1 and the ball was driven by tractive rolling against the disc, its speed being determined using a magnetic method. After all possible explanations for the reduction in film thickness at high speeds were considered, it was shown that the results, which fall well below classical predictions, are consistent with inlet shear heating at the observed sliding speeds.

Another set of tests was then performed, with both disc and ball driven separately, so that the accuracy of the shear heating theory for different types of oils and at different sliding conditions could be assessed. It was found that the thermal correction factor predicts the trend of film thickness behavior well for the oils tested and is particularly accurate at certain slide–roll ratios (depending on the type of oil). Experimental data were also used to obtain improved coefficients for the correction factor for different types of oil to achieve better prediction of film thickness at high speed throughout the whole range of slide–roll ratios.  相似文献   

9.
A mathematical model is proposed of the process of formation of the elastohydrodynamic (EHD) lubricant layer between resilient cylinders that begin to rotate in the lubricating material medium from the resting state. The model assumes division of the whole contact region into three zones: the zone within which dry motion is described by the equations of the elastohydrodynamic theory of lubrication, the transient zone, and the dry contact zone. The method of the numerical solution of this system of equations is presented. The calculations are performed for the lubricating material that was used in the published experimental study of the process of formation of the EHD lubricating layer between the resilient ball and the flat resilient base. It is shown that the calculation results well agree with the experimental data both qualitatively and quantitatively providing that the transient region dimensions are adequately selected. The function of the pressure distribution, the lubricating layer thickness, the lubricating material flow, the rate of approach of the surfaces over the contact region at different moments of time, the time dependencies of the lubricating layer thickness at different points of the contact region, and the coordinates of the boundary points of the dry contact region is also presented.  相似文献   

10.
The effect of surface texturing on thin EHD lubrication films   总被引:2,自引:1,他引:2  
Surface texturing has been successfully used for conformal contacts in many tribological applications in an effort to diminish friction and wear. However, the use of such a surface modifications are still in nascent as far as highly loaded contacts between non-conformal surfaces are concerned. It is mainly caused by the fact that the presence of such micro-features within these contacts can significantly influence the pressure distribution within the contact. Nevertheless, it has been shown in recent studies that the surface texturing can also have beneficial tribological effects if the depth of micro-features is properly designed. This paper is devoted to the experimental study of the effect of the micro-dents of various depths on thin lubrication films to find an experimental evidence of the micro-feature depth threshold for surface texturing applications in highly loaded non-conformal surfaces. The behaviour of an array of micro-dents within thin EHD contacts has been studied by thin film colorimetric interferometry. The influence of surface texturing on lubricant film formation has been observed under sliding/rolling conditions. The significant effect of micro-dents depth on lubricant film thickness is observed for positive slide-to-roll ratio when the disc is moving faster than the micro-textured ball. The presence of deep micro-dents within lubricated contact results in film thickness reduction downstream. As the depth of micro-dents is reduced, this effect diminishes and beneficial effect of micro-dents on film thickness formation has been observed. No significant influence of micro-dents depth on lubricant film shape has been observed in case of negative slide-to-roll conditions when micro-dents do not cause film thickness reduction regardless of their depths.  相似文献   

11.
Abstract

The ball on disc test configuration is preferred to the flat ended pin on disc because the ball is self-aligned and measurement of wear on the ball is of higher accuracy, compared to the pin. Silicon nitride, sliding on itself in water, was tested with the ball on disc tribometer. Misalignment of the test ball from its proper position behind the disc axis of rotation leads to friction measurement errors, which were analysed. The disc wears non-uniformly, the wear track depth and width vary in longitudinal direction by a factor of 2–3. The uneven wear of the disc is explained by the combined effects of sliding surface anisotropy and disc material non-homogeneity on the one hand and by the friction force and the normal load periodic variation on the other hand. During the running-in process at particular sliding velocity amplitude modulated friction force was observed and an explanation by the mechanical vibration 'beating' phenomenon was suggested. Predictive model of the running-in process is presented, which describes the evolution of the ball wear scar area, the contact pressure and the wear rate. The model predictions are consistent with the experimental data.  相似文献   

12.
使用常规球-盘光干涉试验机,研究零卷吸往复运动中油膜的变化情况。实验采用伺服电机驱动钢球与蓝宝石盘,以三角波的形式进行往复运动,两者速度相同但是方向相反。实验过程中采用光干涉技术测量球-盘之间的膜厚,实验后使用双光干涉法测量接触区中截面油膜厚度。实验发现,往复条件下的油膜凹陷小于对应的稳态油膜凹陷,而且接触区发生了速度滑移,导致所产生的油膜凹陷形状和位置区别于零卷吸凹陷;乏油的发生导致接触区中出现大面积的干接触和混合润滑接触。  相似文献   

13.
Effect of surface topography modifications on lubrication film thickness within non-conformal lubricated contact operated under transient speed conditions is observed. Optical test rig is used to observe the lubricant film behaviour between the flat surface of a chromium coated glass disc and a steel ball under simplified operational conditions modelling the cam and tappet contact. Numerical simulation was used to be able to choose the operating conditions suitable for experiments. An array of micro-dents was produced on the ball surface to be able to demonstrate the effect of surface topography on lubrication film formation. Experiments were carried out under elastohydrodynamic lubrication conditions. Obtained results have shown that surface texturing could represent the way how to increase lubrication efficiency of rolling/sliding non-conformal contacts under transient operational conditions through the lubricant emitted from micro-dents. It was found that the lubricant emitted from the micro-dents helps to separate rubbing surfaces especially under thin film lubrication conditions where the rubbing surfaces moves in the opposite direction.  相似文献   

14.
The tribological properties of derivatives of the polyalkoxyglycol esters of dithiophosphoric acid were tested using four‐ball and ball‐on‐disc machines. Polybutoxyglycol dithiophosphoric acid derivatives were found to be effective load‐carrying additives in mineral base oil. Four‐ball and ball‐on‐disc data of some of these additives showed them to have very good antiwear/extreme‐pressure and antifriction properties. These properties were dependent upon the additive's chemical nature, concentration, sliding speed, and load. The presence of polybutoxy groups decreased the concentration of phosphorus in the additive in comparison to zinc dialkyldithiophosphates.  相似文献   

15.
In situ pressure measurements within dimples formed in glass-steel point contacts under various sliding conditions were performed using Raman microspectroscopy. Experiments were conducted using a ball-on-disc type apparatus in which a circular contact is formed between a rotating glass disc and a rotating steel ball. Film thickness distributions were measured by duochromatic optical interferometry. Polyphenyl ether oil (5P4E) which has a high pressure-viscosity coefficient was used to produce a dimple in the contact area. Experimental results show that the pressure increases locally in the dimple zone and the pressure profile changes, accompanying the changes of the dimple location as a function of the slide-to-roll ratio. The maximum pressure is located downstream the maximum height of the dimple. The rheological response of the oil film under dimple occurrence conditions is discussed.  相似文献   

16.
This study concerns the effects of tribochemical interactions at the interface of Si-DLC (silicon-doped diamond-like carbon) film and steel ball in sliding contact on tribological properties of the film. The Si-DLC film was over-coated on pure DLC coating by radio frequency plasma-assisted chemical vapor deposition (r.f. PACVD) with different Si concentration. Friction tests against steel ball using a reciprocating type tribotester were performed in ambient environment. X-Ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES) were used to study the chemical characteristics and elemental composition of the films and mating balls after tests. Results showed a darkgray film consisting of carbon, oxygen and silicon on the worn steel ball surface with different thickness. On the contrary, such film was not observed on the surface of the ball slid against pure DLC coating. The oxidation of Si-DLC surface and steel ball was also found at particular regions of contact area. This demonstrates that tribochemical interactions occurred at the contact area of Si-DLC and steel ball during sliding to form a tribofilm (so called transfer film) on the ball specimen. While the pure DLC coating exhibited high coefficient of friction (∼0.06), the Si-DLC film showed a significant lower coefficient of friction (∼0.022) with the presence of tribofilm on mating ball surface. However, the Si-DLC film possesses a very high wear rate in comparison with the pure DLC. It was found that the tribochemical interactions strongly affected tribological properties of the Si-DLC film in sliding against steel.  相似文献   

17.
Spectroscopic ellipsometry (SE) was used to determine the thickness of zinc dialkyldithiophosphate (ZnDTP) reaction films formed on steel surfaces. Simultaneous measurements of friction coefficient and electrical contact resistance (ECR) were carried out using a cylinder-on-disk tribometer to form ZnDTP reaction films under a sliding condition, with monitoring of both the change of friction and the formation of ZnDTP reaction films during sliding. The film thickness was obtained by regression fitting of the data generated by the dispersion model to the experimental data. The results indicated that the thickness of the reaction film influenced the friction behavior of ZnDTP.  相似文献   

18.
The tribological chemistry of carbon dioxide and water vapor is studied on copper surfaces at high pressures, with a view to understand the gas-phase lubrication of copper–copper sliding contacts. The adsorption and film formation properties are studied on vapor-deposited copper films in an ultrahigh vacuum chamber using a quartz crystal microbalance. The nature of the reactively formed film is studied after reaction by ex situ X-ray photoelectron spectroscopy (XPS). Carbon dioxide adsorbs reversibly on copper, while water vapor adsorbs both reversibly and irreversibly, where XPS reveals that the irreversibly formed film consists of a mixture of cuprous oxide/hydroxide. Measuring the thickness of the cuprous oxide/hydroxide film as a function of water vapor pressure and temperature reveals that its thickness varies between about 6 and 14 Å and is proportional to the total amount of water adsorbed on the surface. This results in a cuprous oxide/hydroxide film that is thinner at higher temperatures. Measurements of the friction coefficient as a function of temperature and pressure in the presence of water vapor shows that it correlates with film thickness, reaching a limiting value of ~0.35 for thicker films.  相似文献   

19.
A high performance barrel and plate apparatus was built to study film formation and traction by simulating the real situation of a lubricated elliptical contact in an angular ball bearing under general kinematic conditions. Simultaneous measurements of load, speed of each surface, traction, and film thickness by optical interferometry can be performed. The sapphire disc plate and the steel barrel are driven independently at constant controlled speeds. Small relative sliding, lateral sliding and spinning near pure rolling conditions can be imposed by controlling barrel shaft angle contact location. Tests were performed at ambient temperature for a small barrel whose principal radii are 1.34 mm and 9.7 mm, for applied loads which generate Hertzian pressures up to 2 × 109 N/m2, and for a low viscosity mineral oil. Typical experimental results show that under elasto-hydrodynamic conditions, the centre film thickness is slightly below the values calculated from classical elastohydrodynamic theories and that oil starvation occurs at high speeds. Traction curves versus slide/roll ratio are presented for different loads and under spinning and lateral sliding conditions.  相似文献   

20.
The progress of wear associated with the compound and diffusion layers of nitrided samples was studied by employing laboratory tests at low, medium and high contact pressures, simulating the conditions occurring during the hot extrusion of aluminium. It was found that with increasing of contact pressure also wear rates increase that indicates on predominately frictional removal of compound layer which was confirmed by scanning electron microscopy and back-scattered electron micrographs as well as energy-dispersive spectroscopy analysis of tested surfaces. Testing at medium contact pressures reveals some common features observed at testing at lower as well as at higher contact pressures. The essential difference between the testing at medium and low contact pressures is in the density of the obtained micro-craters and appearance of their extension in sliding direction at medium contact pressures. At higher contact pressure, removal of compound layer is already preferentially oriented in sliding direction in the first stage, while at medium contact pressure, this is observed only in later stages of degradation progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号