首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gasification of two different coals and chars with CO2 and CO2/O2 mixture in a 48-mm-i.d. circulating fluidized bed (CFB) gasifier is investigated. The effects of operation condition on gas composition, carbon conversion and gasification efficiency were studied. A simple CFB coal gasification district mathematical model has been set up. The effects of coal type and CFB operating conditions on CFB coal gasification are discussed based on the CFB gasification test and model simulation. The main operation parameters in CFB gasification system are coal type, gas superficial velocity, circulating rate of solids and reaction temperature. It is found that CO concentration and carbon conversion increase with increasing solids circulating rate and decreasing gas velocity due to the increase in gas residence time and solids holdup in the CFB. The carbon conversion increases with increasing temperature and O2 concentration in the inlet gas. The experimental results prove that the CFB gasifier works well for high volatile, high reactivity coal.  相似文献   

2.
苑卫军  周金国 《陶瓷》2010,(7):55-57
发生炉正常炉出煤气温度与气化用煤的化学反应活性和气化用煤的挥发分及水分含量相关。气化化学反应活性较强的煤,气化反应温度相对较低,其正常炉出煤气温度也相应较低。随着气化用煤中挥发分及水分含量的增高,发生炉正常炉出煤气温度降低,煤中水分含量对炉出煤气温度影响较大,相比而言,煤中挥发分含量对炉出煤气温度的影响相对较弱。正确确定发生炉在气化不同煤种时的正常炉出煤气温度指标,有利于操作人员根据出煤气温度的变化,准确判断并正确处理炉况。  相似文献   

3.
郑志行  张家元  李谦  周浩宇 《化工进展》2021,40(8):4165-4172
基于Aspen Plus软件建立了GE气流床煤气化的平衡模型和动力学模型,计算了气化的煤气组成和碳转化率。模型分为热解、气化和气液分离三个阶段。其中,气化阶段又分为初步气化和气化重整,从而获得气化产物在恒定温度下的分布。平衡模型的气化阶段使用了吉布斯反应器RGIBBS,基于吉布斯自由能最小化原理对体系内的气化产物进行计算;动力学模型的气化阶段使用了全混流反应器RCSTR,基于煤气化反应的动力学机理对体系内的气化产物进行计算。模拟值与GE气化炉的实际工程数据进行了对比,结果表明,平衡模型可在一定程度上反映气化结果的变化趋势,但预测结果的准确性有所欠缺,而基于气化反应机理建立的动力学模型能很好地预测GE气化炉的气化结果。对动力学模型中的全混流反应器进行反应时间设定,可以对GE气化炉生产提供一定的指导,结果表明:反应停留时间为3.5s时就可以达到很好的气化效果。温度是影响气化反应速率及产物分布的重要因素,利用煤气化的动力学模型模拟了气化温度对气体组成及碳转化率的影响,结果表明:随着气化温度的升高,CO含量逐渐增加,H2含量基本不变,CO2含量逐渐减小,碳转化率逐渐升高。  相似文献   

4.
煤焦与水蒸气加压气化反应活性的研究   总被引:12,自引:0,他引:12  
采用填充床热天平反应器(PBBR)系统,于0.098MPa~2.45MPa压力和750℃~1000℃温度下进行了煤焦与水蒸气气化反应的活性研究,以基碳转化率(X)和比气化速率(B)作为反应活性的评价指标。结果表明,煤焦的X和B随着温度和压力的增加而增加;煤焦的气化反应活性顺序为:褐煤焦>气煤焦>贫煤焦。  相似文献   

5.
褐煤经四氢化萘处理后的结构及热解-气化特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
在小型反应釜上采用非极性有机溶剂四氢化萘(tetrahydronaphthalene, THN)对内蒙古锡林郭勒褐煤进行脱水,获取了不同温度下的脱水试样,运用傅里叶红外光谱(Fourier transform infrared spectroscopy,FT-IR)分析技术对比研究了在不同脱水温度下煤样中有机官能团的变化,通过FT-IR谱图的分峰拟合计算,对脱水煤样的化学结构变化特征进行半定量分析,并结合热重(thermal gravity analysis/differential thermal gravity,TG/DTG)和实验室固定床反应器(fixed bed reactor)考察了不同脱水温度下煤样的热解气化特性和热解气相产物分布规律,并对脱水煤样在最大失重速率区间的动力学参数进行了计算。试验结果显示:四氢化萘溶剂对褐煤的脱水提质是有效的,150~200℃时C O开始分解,而此时芳香环上的C C仍然相对稳定。随着脱水温度的升高,芳香类氢含量先减小后增大,脂肪类氢含量先增大后减小,芳香度和芳香碳在脱水温度范围内逐渐增大。煤样的脱水温度升高,热解气相产物H2、CH4、CO累积产率增大,CO2累积产率减小;脱水煤样热解活化能随着脱水温度的升高而升高,进而导致脱水温度较高煤样热解失重率降低。  相似文献   

6.
用差热分析技术研究煤/煤焦的加压气化动力学   总被引:2,自引:0,他引:2       下载免费PDF全文
吴帆  朱素渝 《化工学报》1991,42(6):738-745
本文建立了一套适合于多种气体使用的高温高压差热分析装置,并用其考察了四种典型的不同煤化程度煤或煤焦,分别将它们在CO_2和水蒸气中进行加压气化.结果表明,试样的气化反应性随煤化程度的加深而降低;气化剂压力对反应性的影响分别为g(p_(co_2))=p_(co_2)/(1+k_(co_2)p_(co_2)和g(p_(H_2O)=p_(H_2O)/(k_(H_2O)+p_(H_2O)).在建立了近似的差热分析数据处理方法的基础上,得到用不同参数值描述不同煤种在不同气体中的加压气化动力学通用方程.与热重分析等传统方法相比,差热分析技术用于煤/煤焦气化动力学的研究不但减少了实验工作量,而且可以得到较准确的结果.  相似文献   

7.
A. A. Lizzio  A. Piotrowski  L. R. Radovic 《Fuel》1988,67(12):1691-1695
The gasification reactivity of an Illinois No. 6 bituminous coal char was determined in oxygen and carbon dioxide using thermogravimetric analysis (TGA). Extensive tests were carried out to ensure the absence of diffusional limitations. Measurements of chemically controlled rates were verified by analysing the activation energies for reactions of the char at various conversion levels. The effect of stable carbon-oxygen complex formation on TGA reactivity profiles was investigated. For disordered carbons (e.g. coal chars) gasified in oxygen, the results showed that the observed differences between reactivity profiles obtained by TGA and those obtained by product gas analysis (e.g. non-dispersive infrared spectroscopy, i.r.) can be attributed to significant amounts of stable complex being formed during the initial stages of reaction. The fact that TGA reactivity profiles become equivalent to i.r. reactivity profiles, when corrected to account for stable complex formation, suggests that the former may not be accurate representations of the variations in intrinsic reaction rates and should be used with caution when attempting to validate proposed models of char gasification kinetics. The extent to which stable complex forms during char gasification was used to explain the observed differences in the reactivity profiles obtained for reactions of char in oxygen and carbon dioxide.  相似文献   

8.
The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube fur-nace (DTF). The effects of various factors such as types of carbonaceous material, gasification temperature (1100–1400 °C) and mass ratio of steam to char (0.4:1, 0.6:1 and 1:1 separately) on gasification gas or solid products were investigated. The results showed that for al carbonaceous materials studied, H2 content exhibited the larg-est part of gasification gaseous products and CH4 had the smal est part. For the two petroleum cokes, CO2 content was higher than CO, which was similar to Zun-yi char. When the steam/char ratio was constant, the carbon con-version of both Shen-fu and PC chars increased with increasing temperature. When the gasification temperature was constant, the carbon conversions of al char samples increased with increasing steam/char ratio. For al the steam/char ratios, compared to water gas shift reaction, char-H2O and char-CO2 reaction were further from the thermodynamic equilibrium due to a much lower char gasification rate than that of water gas shift reaction rate. Therefore, kinetic effects may play a more important role in a char gasification step than thermodynamic ef-fects when the gasification reaction of char was held in DTF. The calculating method for the equilibrium shift in this study wil be a worth reference for analysis of the gaseous components in industrial gasifier. The reactivity of residual cokes decreased and the crystal layer (L002/d002) numbers of residual cokes increased with increasing gasification temperature. Therefore, L002/d002, the carbon crystallite structure parameter, can be used to evaluate the reactivity of residual cokes.  相似文献   

9.
David P.C. Fung  Sang D. Kim 《Fuel》1984,63(9):1197-1201
The reactivities of eight Canadian coal-derived chars of four different ranks were measured thermogra-vimetrically at 500°C. It has been found that char reactivity decreases with increase in the carbon content (or rank) of the parent coal. Chars containing more calcium and magnesium oxides have higher reactivities. The experimental results of mass conversion are well represented by the shrinking core model in which the initial stage of the reaction is kinetically controlled by chemical reaction and the later stage by gas diffusion through the ash.  相似文献   

10.
采用机械混合法制备的Fe2O3/膨润土为载氧体,在加压固定床中进行煤焦化学链气化试验和动力学研究,借助拉曼和N2吸附等温线表征手段,分析压力对煤焦反应活性及煤焦碳结构和孔结构的影响,讨论煤焦加压化学链气化反应机理。结果表明:系统总压从0.46MPa增加至0.80MPa时,煤焦化学链气化反应速率从0.0159min-1提高至0.0309min-1;水蒸气分压增加75%,H2/CO摩尔比值增加74%。煤焦加压化学链气化过程可以用随机孔模型(RPM)描述,系统总压增加有利于内部扩散。系统总压增大煤焦的比表面积增加,水蒸气分压增大煤焦的反应活性提高,因而提高了煤焦化学链气化反应速率。  相似文献   

11.
The gasification reactivities of three kinds of different coal ranks (Huolinhe lignite, Shenmu bituminous coal, and Jincheng anthracite) with CO2 and H2O was carried out on a self-made pressurized fixed-bed reactor at increased pressures (up to 1.0 MPa). The physicochemical characteristics of the chars at various levels of carbon conversion were studied via scanning electron microscopy (SEM), X-ray diffraction (XRD), and BET surface area. Results show that the char gasification reactivity increases with increasing partial pressure. The gasification reaction is controlled by pore diffusion, the rate decreases with increasing total system pressure, and under chemical kinetic control there is no pressure dependence. In general, gasification rates decrease for coals of progressively higher rank. The experimental results could be well described by the shrinking core model for three chars during steam and CO2 gasification. The values of reaction order n with steam were 0.49, 0.46, 0.43, respectively. Meanwhile, the values of reaction order n with CO2 were 0.31, 0.28, 0.26, respectively. With the coal rank increasing, the pressure order m is higher, the activation energies increase slightly with steam, and the activation energy with CO2 increases noticeably. As the carbon conversion increases, the degree of graphitization is enhanced. The surface area of the gasified char increases rapidly with the progress of gasification and peaks at about 40% of char gasification.  相似文献   

12.
我国富煤、贫油、少气的能源结构特点,石油、天然气对外依存度高的实际情况以及对煤炭高效清洁利用的重视赋予了煤化工产业发展的机遇,作为煤化工产业龙头的煤气化技术在中国蓬勃发展。随着煤气化技术的大规模推广,煤气化渣的堆存量及产生量越来越大,造成了严重的环境污染和土地资源浪费,对煤化工企业的可持续发展造成不利影响,煤气化渣处理迫在眉睫。笔者介绍了煤气化渣的产生及其带来的环境问题,煤气化渣的基本特点,综述了国内外煤气化渣在建工建材(骨料、胶凝材料、墙体材料、免烧砖)、土壤水体修复(土壤改良、水体修复)、残碳利用(残碳性质、残碳提质、循环掺烧)、高值化利用(催化剂载体、橡塑填料、陶瓷材料、硅基材料)等方面的研究进展,提出了煤气化渣综合利用思路。煤气化渣主要由SiO2、Al2O3、CaO、Fe2O3、C组成,气化细渣残碳含量较气化粗渣高,煤气化渣的主要矿相为非晶态铝硅酸盐,夹杂着石英、方解石等晶相,富含硅、铝、碳资源的化学组成特点和特殊的矿相构成是煤气化渣回收利用的基础。目前煤气化渣规模化处置利用主要聚焦在建工建材、生态治理等方面,但因其碳含量高、杂质含量高等特点,导致建工建材掺量低、品质不稳定,生态治理二次污染严重等问题,经济和环境效益差。在资源化利用方面,结合煤气化渣资源特点,目前主要在碳材料开发利用、陶瓷材料制备、铝/硅基产品制备等方面引起广泛关注,虽然经济效益相对显著,但均处于实验室研究或扩试试验阶段,主要存在成本高、流程复杂、杂质难调控、下游市场小等问题,无法实现规模化利用。为了提高企业经济效益,同时解决企业环保难题,结合煤气化渣堆存量大、产生量大、处理迫切的现状以及富含铝、硅、碳资源的特殊属性,建议煤气化渣的综合利用思路为"规模化消纳解决企业环保问题为主+高值化利用增加企业经济效益为辅"。开发过程简单、适应性强、具有一定经济效益的煤气化渣综合利用技术路线,是目前煤气化渣利用的有效途径和迫切需求。  相似文献   

13.
Modeling of catalytic gasification kinetics of coal char and carbon   总被引:1,自引:0,他引:1  
Y. Zhang  S. Hara  S. Kajitani  M. Ashizawa 《Fuel》2010,89(1):152-157
Calcium- and potassium-catalyzed gasification reactions of coal char and carbon by CO2 are conducted, and the common theoretical kinetic models for gas-carbon (or char) reaction are reviewed. The obtained experimental reactivities as a function of conversion are compared with those calculated based on the random pore model (RPM), and great deviations are found at low or high conversion levels as predicted by theory. Namely, calcium-catalyzed gasification shows enhanced reactivity at low conversion levels of <0.4, whereas potassium-catalyzed gasification indicated a peculiarity that the reactivity increases with conversion. CO2 chemisorption analysis received satisfactory successes in both interpreting catalytic effects and correlating the gasification reactivity with irreversible CO2 chemical uptakes (CCUir) of char and carbon at 300 °C. In details, calcium and potassium additions led to significant increases in CCUir and correspondent high reactivities of the char and carbon. Furthermore, CCUir of char and carbon decreased with conversion for calcium-catalyzed reaction but increased for potassium-catalyzed one, corresponded to the tendency of their reactivity. The RPM is extended and applied to these catalytic gasification systems. It is found that the extended RPM predicts the experimental reactivity satisfactorily. The most important finding of this paper is that the empirical constants in the extended RPM correlate well with catalyst loadings on coal.  相似文献   

14.
Biomass and coal are important solid fuels for generation of hydrogen-rich syngas from steam gasification. In this work, experiments were performed in a bench-scale gasifier to investigate the effect of coal-to-biomass ratio and the reaction kinetics for gasification of chars of biomass, coal and coal–biomass blends. In the gasification of these chars, steam was used as the gasification agent, while nitrogen was used as a gas carrier. The gasification temperature was controlled at 850, 900 and 950 °C. Gas produced was analysed using a micro-GC from which carbon conversion rate was also determined. From the experiments, it is found that the coal and biomass chars have different gasification characteristics and the overall reaction rate decreases with an increase in the ratio of coal–to-biomass.The microstructure of the coal char and biomass char was examined using scanning electronic microscopy (SEM), and it was found that the biomass char is more amorphous, whereas the coal char has larger pore size. The former enhances the intrinsic reaction rate and the latter influences the intra particle mass transportation. The difference in mass transfer of the gasification agent into the char particles between the two fuels is dominant in the char gasification.  相似文献   

15.
传质对热天平坩埚内煤焦气化反应的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
热天平标准配置的坩埚为四周及底部密封的敞口容器,气流不能穿过物料层从坩埚底部流出,从而影响煤焦气化反应的动力学行为.研究了坩埚尺寸、物料床层厚度对杯状坩埚内煤焦-CO2气化(气固相反应)影响.采用PHOENICS软件模拟分析了杯状坩埚附近及内部流体运动、浓度分布,同时建立了杯状坩埚内煤焦-CO2反应-扩散模型,两者能很好地吻合.杯状坩埚中进行的煤焦-CO2反应模型参数φ和Da反映了气体质量传递对反应的影响.  相似文献   

16.
Two coal chars were gasified with carbon dioxide or steam using a Pressurized Drop Tube Furnace (PDTF) at high temperature and pressurized conditions to simulate the inside of an air-blown two-stage entrained flow coal gasifier. Chars were produced by rapid pyrolysis of pulverized coals using a DTF in a nitrogen gas flow at 1400°C. Gasification temperatures were from 1100 to 1500°C and pressures were from 0.2 to 2 MPa. As a result, the surface area of the gasified char increased rapidly with the progress of gasification up to about six times the size of initial surface area and peaked at about 40% of char gasification. These changes of surface area and reaction rate could be described with a random pore model and a gasification reaction rate equation was derived. Reaction order was 0.73 for gasification of the coal char with carbon dioxide and 0.86 for that with steam. Activation energy was 163 kJ/mol for gasification with carbon dioxide and 214 kJ/mol for that with steam. At high temperature as the reaction rate with carbon dioxide is about 0.03 s−1, the reaction rate of the coal char was controlled by pore diffusion, while that of another coal char was controlled by surface reaction where reaction order was 0.49 and activation energy was 261 kJ/mol.  相似文献   

17.
In the last decade the reduction of CO2 emissions from fossil fuels became a worldwide topic. Co-gasification of coal and wood provides an opportunity to combine the advantages of the well-researched usage of fossil fuels such as coal with CO2-neutral biomass. Gasification itself is a technology with many advantages. The producer gas can be used in many ways; for electric power generation in a gas engine or gas turbine, for Fischer-Tropsch synthesis of liquid fuels and also for production of gaseous products such as synthetic natural gas (bio SNG). Moreover, the use of the producer gas in fuel cells is under investigation. The mixture of coal and wood leads to the opportunity to choose the gas composition as best befits the desired process. Within this study the focus of investigation was of gasification of coal and wood in various ratios and the resulting changes in producer gas composition. Co-gasification of coal and wood leads to linear producer gas composition changes with linear changing load ratios (coal/wood). Hydrogen concentrations rise with increasing coal ratio, while CO concentrations decrease. Due to the lower sulfur and nitrogen content of wood, levels of the impurities NH3 and H2S in the producer gas fall with decreasing coal ratio. It is also shown that the majority of sulfur is released in the gasification zone and, therefore, no further cleaning of the flue gas is necessary. All mixture ratios, from 100 energy% to 0 energy% coal, performed well in the 100 kW dual fluidized bed gasifier. Although the gasifier was originally designed for wood, an addition of coal as fuel in industrial sized plants based on the same technology should pose no problems.  相似文献   

18.
Gasification behaviour of Australian coals at high temperature and pressure   总被引:1,自引:0,他引:1  
This paper presents gasification conversion data generated for a suite of Australian coals reacting with oxygen/nitrogen mixtures at 2.0 MPa pressure and at temperatures up to 1773 K, as part of a wider investigation into the gasification behaviour of Australian coals. The effects of O:C ratio, residence time and coal type on conversion levels and product gas composition were investigated under conditions relevant to those present in entrained-flow gasification systems. At higher temperatures, coal conversion levels are, as expected, higher, whilst product gas compositions continue to reflect the relevant gas phase equilibrium conditions. These gas phase equilibrium concentrations show strong dependence on the amount of carbon in the gas phase (i.e. coal conversion). The increased conversion achieved at high temperatures allows the contribution of coal-specific properties such as char structure and reactivity to be investigated in more detail than previously possible. Furthermore, at higher conversion levels the effects of coal type on product gas composition are more apparent than at lower conversion levels. These high temperature, high pressure gasification conversion data have been reconciled with high pressure bench-scale pyrolysis and char reactivity measurements, highlighting the significance of coal-specific effects of key gasification parameters.  相似文献   

19.
The carbon in a waste filter for water purification may be a new source of energy. The char of waste filter carbon and the char of wood chip have been gasified with steam in a thermobalance reactor under atmospheric pressure. The effect of gasification temperature (700-850°C) and partial pressure of steam (0.3-0.9 atm) on the gasification rate has been investigated. Several gas-solid reaction models have been compared for their prediction ability of the gasification reaction behavior. The modified volumetric reaction model was used to evaluate kinetic data. The gasification rate of waste filter carbon has been compared with the rates of coal and wood chip biomass. The activation energies of filter carbon and wood chip were determined to be 89.1 and 171.4 kJ/mol, respectively. The apparent reaction rate equation for waste filter carbon has been presented.  相似文献   

20.
《Fuel》2007,86(10-11):1631-1640
The advanced high efficiency cycles are all based on gas turbine technology, so coal gasification is the heart of the process. A 2 MWth spout-fluid bed gasifier has been constructed to study the partial gasification performance of a high ash Chinese coal. This paper presents the results of pilot plant partial gasification tests carried out at 0.5 MPa pressure and temperatures within the range of 950–980 °C in order to assess the technical feasibility of the raw gas and residual char generated from the gasifiier for use in the gas turbine based power plant. The results indicate that the gasification process at a higher temperature is better as far as carbon conversion, gas yield and cold gas efficiency are concerned. Increasing steam to coal ratio from 0.32 to 0.45 favors the water–gas and water–gas shift reactions that causes hydrogen content in the raw gas to rise. Coal gasification at a higher bed height shows advantages in gas quality, carbon conversion, gas yield and cold gas efficiency. The gas heating value data obtained from the deep-bed-height displays only 6–12% lower than the calculated value on the basis of Gibbs free energy minimization. The char residue shows high combustion reactivity and more than 99% combustion efficiency can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号