首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Undrained Lateral Pile Response in Sloping Ground   总被引:1,自引:0,他引:1  
Three-dimensional finite element analyses were performed to study the behavior of piles in sloping ground under undrained lateral loading conditions. Piles of different diameter and length in sloping cohesive soils of different undrained shear strength and several ground slopes were considered. Based on the results of the finite element analyses, analytical formulations are derived for the ultimate load per unit length and the initial stiffness of hyperbolic p-y curves. New p-y criteria for static loading of piles in clay are proposed, which take into account the inclination of the slope and the adhesion of the pile-slope interface. These curves are used through a commercial subgrade reaction computer code to parametrically analyze the effect of slope inclination and pile adhesion on lateral displacements and bending moments. To validate the proposed p-y curves, a number of well documented lateral load tests are analyzed. Remarkable agreement is obtained between predicted and measured responses for a wide range of soil undrained shear strength and pile diameter, length, and stiffness.  相似文献   

2.
Soil movements associated with slope instability induce shear forces and bending moments in stabilizing piles that vary with the buildup of passive pile resistance. For such free-field lateral soil movements, stress development along the pile element is a function of the relative displacement between the soil and the pile. To investigate the effects of relative soil-pile displacement on pile response, large-scale load tests were performed on relatively slender, drilled, composite pile elements (cementitious grout with centered steel reinforcing bar). The piles were installed through a shear box into stable soil and then loaded by lateral translation of the shear box. The load tests included two pile diameters (nominal 115 and 178?mm) and three cohesive soil types (loess, glacial till, and weathered shale). Instrumentation indicated the relative soil-pile displacements and the pile response to the loads that developed along the piles. Using the experimental results, an analysis approach was evaluated using soil p-y curves derived from laboratory undrained shear strength tests. The test piles and analyses helped characterize behavioral stages of the composite pile elements at loads up to pile section failure and also provided a unique dataset to evaluate the lateral response analysis method for its applicability to slender piles.  相似文献   

3.
Laterally spreading nonliquefied crusts can exert large loads on pile foundations causing major damage to structures. While monotonic load tests of pile caps indicate that full passive resistance may be mobilized by displacements on the order of 1–7% of the pile cap height, dynamic centrifuge model tests show that much larger relative displacements may be required to mobilize the full passive load from a laterally spreading crust onto a pile group. The centrifuge models contained six-pile groups embedded in a gently sloping soil profile with a nonliquefied crust over liquefiable loose sand over dense sand. The nonliquefied crust layer spread downslope on top of the liquefied sand layer, and failed in the passive mode against the pile foundations. The dynamic trace of lateral load versus relative displacement between the “free-field” crust and pile cap is nonlinear and hysteretic, and depends on the cyclic mobility of the underlying liquefiable sand, ground motion characteristics, and cyclic degradation and cracking of the nonliquefied crust. Analytical models are derived to explain a mechanism by which liquefaction of the underlying sand layer causes the soil-to-pile-cap interaction stresses to be distributed through a larger zone of influence in the crust, thereby contributing to the softer load transfer behavior. The analytical models distinguish between structural loading and lateral spreading conditions. Load transfer relations obtained from the two analytical models reasonably envelope the responses observed in the centrifuge tests.  相似文献   

4.
The characteristic load method (CLM) can be used to estimate lateral deflections and maximum bending moments in single fixed-head piles under lateral load. However, this approach is limited to cases where the lateral load on the pile top is applied at the ground surface. When the pile top is embedded, as in most piles that are capped, the additional embedment results in an increased lateral resistance. A simple approach to account for embedment effects in the CLM is presented for single fixed-head piles. In practice, fixed-head piles are more typically used in groups where the response of an individual pile can be influenced through the adjacent soil by the response of other nearby piles. This pile–soil–pile interaction results in larger deflections and moments in pile groups for the same load per pile compared to single piles. A simplified procedure to estimate group deflections and moments was also developed based on the p-multiplier approach. Group amplification factors are introduced to amplify the single pile deflection and bending moment to reflect pile–soil–pile interaction. The resulting approach lends itself well to simple spreadsheet computations and provides good agreement with other generally accepted analytical tools and with values measured in published lateral load tests on groups of fixed-head piles.  相似文献   

5.
Permanent Strains of Piles in Sand due to Cyclic Lateral Loads   总被引:2,自引:0,他引:2  
The strain superposition concept, proposed for ballast study, is applied here to evaluate strain accumulation for laterally loaded piles in sand. It is shown that the soil properties, types of pile installation, cyclic loading types, pile embedded length, and pile∕soil relative stiffness ratio are important factors that influence the pile behavior under mixed lateral loads. These factors are quantified by means of a degradation factor, t, which is derived from the results of 20 full-scale pile load tests and then verified using 6 additional full-scale pile load tests.  相似文献   

6.
This paper presents the response of piles in liquefiable soil under seismic loads. The effects of soil, pile, and earthquake parameters on the two potential pile failure mechanisms, bending and buckling, are examined. The analysis is conducted using a two-dimensional plain strain finite difference program considering a nonlinear constitutive model for soil liquefaction, strength reduction, and pile-soil interaction. The depths of liquefaction, maximum lateral displacement, and maximum pile bending moment are obtained for concrete and steel piles for different soil relative densities, pile diameters, earthquake predominant frequencies, and peak accelerations. The potential failure mechanisms of piles identified from the parametric analysis are discussed.  相似文献   

7.
The laboratory and field test data on the response of piles under the combined action of vertical and lateral loads is rather limited. The current practice for design of piles is to consider the vertical and lateral loads independent of each other. This paper presents some results from three-dimensional finite-element analyses that show the significant influence of vertical loads on a pile’s lateral response. The analyses were performed in both homogeneous clayey soils and homogeneous sandy soils. The results have shown that the influence of vertical loads on the lateral response of piles is to significantly increase the capacity in sandy soils and marginally decrease the capacity in clayey soils. In general, it was found that the effect of vertical loads in sandy soils is significant even for long piles, which are as long as 30 times the pile width, while in the case of clayey soils, the effect is not significant for piles beyond a length of 15 times the width of the pile. The design bending moments in the laterally loaded piles were also found to be dependent on the level of vertical load on the piles.  相似文献   

8.
Many transmission towers, high-rise buildings, and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large diameter with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile, because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite-element method (FEM) of model tests and a prototype test of a laterally loaded short pile and pier foundation located near slopes, respectively. Initially, in this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30° slopes and horizontal ground were analyzed by the three- dimensional (3D) finite-element (FE) analyses. Furthermore, field tests of a prototype pier foundation subjected to lateral loading on a 30° slope was reported. The FE analyses were conducted to simulate these results. The main purpose of this paper is the validation of the 3D elasto–plastic FEM by comparisons with the experimental data.  相似文献   

9.
Centrifuge Modeling of Torsionally Loaded Pile Groups   总被引:1,自引:0,他引:1  
This paper reports a series of centrifuge model tests on torsionally loaded 1×2, 2×2, and 3×3 pile groups in sand. The objectives of the paper are to investigate: (1) the response of the pile groups subjected to torsion; (2) the way in which the applied torque is transferred in the pile groups; (3) the internal forces mobilized in these torsionally loaded pile groups and their contributions to resist the applied torque; and (4) the influence factors that affect the load transfer, such as soil density and pile-cap connection. In these model tests, the group torsional resistances of the pile groups increased monotonically in the test range of twist angles up to 8°. Both torsional and lateral resistances of the individual piles were simultaneously mobilized to resist the applied torque. The torsional resistances were substantially mobilized at small twist angles, while the lateral resistances kept increasing in the whole range of twist angles. Thus, the contribution of the torsional resistances to the applied torque decreased at large twist angles. The piles at different locations in a pile group could develop not only different horizontal displacements, but also different pile–soil–pile interactions and load–deformation coupling effect, hence, the torsional and lateral resistances of the piles are a function of pile location. The soil density had a more significant effect on the torsional resistances than on the lateral resistances of the group piles.  相似文献   

10.
This paper presents experimental results and analysis of six model centrifuge experiments conducted on the 150?g-ton Rensselaer Polytechnic Institute centrifuge to investigate the effect of soil permeability on the response of end-bearing single piles and pile groups subjected to lateral spreading. The models were tested in a laminar box and simulate a mild infinite slope with a liquefiable sand layer on top of a nonliquefiable layer. Three fine sand models consisting of a single pile, a 3×1 pile group, and a 2×2 pile group were tested, first using water as pore fluid, and then repeated using a viscous pore fluid, hence simulating two sands of different permeability in the field. The results were dramatically different, with the three tests simulating a low permeability soil developing 3–6 times larger pile head displacements and bending moments at the end of shaking. Deformation observations of colored sand strips, as well as measurements of sustained negative excess pore pressures near the foundations in the “viscous fluid” experiments, indicated that an approximately inverted conical zone of nonliquefied soil had formed in these tests at shallow depths around the foundation, which forced the liquefied soil in the free field to apply its lateral pressure against a much larger effective foundation area. Additional p-y and limit equilibrium back-analyses support the hypothesis that the greatly increased foundation bending response observed when the soil is less pervious is due to the formation of such inverted conical volume of nonliquefied sand. This study provides evidence of the importance of soil permeability on pile foundations response during lateral spreading for cases when the liquefied deposit reaches the ground surface, and suggests that bending response may be greater in silty sands than in clean sands in the field. Moreover, the observations in this study may serve as basis for realistic practical engineering methods to evaluate pile foundations subjected to lateral spreading and pressure of liquefied soil.  相似文献   

11.
An extensive program of laboratory tests was carried out to study the effect of reinforcing an earth slope on the lateral behavior of a single vertical pile located near the slope. Layers of geogrid were used to reinforce a sandy slope of 1 (V):1.5 (H) made with sands of three different unit weights representing dense, medium dense, and loose relative densities. Several configurations of geogrid reinforcement with different numbers of layers, vertical spacing, and length were investigated. The experimental program also included studies of the location of pile relative to the slope crest, relative density of sand, and embedment length of pile. The results indicate that stabilizing a soil slope has a significant benefit of improving the lateral load resistance of a vertical pile. The improvement in pile lateral load was found to be strongly dependent on the number of geogrid layers, layer size, and relative density of the sand. It was also found that soil reinforcement is more effective for piles located closer to the slope crest. Based on test results, critical values are discussed and recommended.  相似文献   

12.
The behavior of step tapered bored piles in sand, under static lateral loading, was examined by field tests at one site in Kuwait. A total of 14 bored piles including two instrumented piles were installed for lateral loading. The soil profile consists of medium dense sand with weak cementations and no groundwater was encountered in the boreholes. Laboratory tests were carried out to determine the basic soil characteristics and the strength parameters. Both the ultimate lateral capacity and the deflections at applied loads were examined. The results indicate increased lateral load carrying capacity and decreased deflections at different applied loads for the step tapered piles due to the enlargement or strengthening of the upper section of the piles. The advantages of using this type of pile is emphasized including the cost saving resulting from an economical design.  相似文献   

13.
The coupled bridge foundation-superstructure finite-element code FLPIER was employed to predict the lateral response of the single piles and 3 × 3 to 7 × 3 pile groups founded in both loose and medium dense sands. The p-multiplier factors suggested by McVay et al. for laterally loaded pile groups with multiple pile rows were implemented for the predictions. The soil parameters were obtained through a back-analysis procedure based on single pile test results. The latter, as well as the numerical predictions of both the single and group tests, are presented. It was found that the numerical code FLPIER did an excellent job of predicting the response of both the single piles and the 3 × 3 to 7 × 3 pile groups. The latter involved the predictions of lateral load versus lateral deflection of the group, the shears and bending moments developed in the individual piles, and the distributions of the lateral loads in each pile row, which were all in good agreement with the measured results.  相似文献   

14.
There has been much advancement using conceptual models and analytical methods to explain various aspects of pile performance. They are mainly based on the findings of model tests and full-scale pile tests in fine-grained and coarse-grained soils, and driven piles on land are normally less than 40?m. Design methods developed from this data bank of pile geometries and soil conditions for long piles should be treated with caution. In this paper, 13 H-piles of 34–60?m and 7,096?kN capacity founded on granitic saprolite are studied. Among them, two piles were restriked at different time intervals. All piles were axially load tested statically using a maintained load method. In contrast to the short rigid piles founded on weaker soil, their load-transfer mechanism varied with the magnitude of applied load and pile length. They deformed almost linearly at small loads and might have buckled when the loads were large and the creep settlements were found to be length dependent. Existing criteria might not be able to interpret failure loads sometimes, but a pile dynamic analyzer was found to give the best estimate on pile capacity.  相似文献   

15.
In the United States, an estimated $1 billion is spent annually on repair and replacement of deep foundations. In a recent study, the possibility of using ultrahigh-performance concrete (UHPC) for deep foundation applications was explored with the objectives of increasing the service life of deep foundations supporting bridges to 75 years and reducing maintenance costs. This paper focuses on field evaluation of two UHPC piles and references a steel H-pile. An UHPC pile with an H shape was designed to simplify the process of casting the pile and reduce the volume (i.e., cost) of the material needed to cast the pile. Two instrumented UHPC piles were driven in loess on top of a glacial till clay soil and load tested under vertical and lateral loads. This paper provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. The results presented in this paper prove that the designed UHPC piles can be driven using the same equipment used to drive steel H-piles through hard soil layers without a pile cushion. The vertical load capacity of the UHPC pile was over 80% higher than that of the steel H-piles.  相似文献   

16.
This paper presents results of full-scale lateral load tests of one single pile and three pile groups in Hong Kong. The test piles, which are embedded in superficial deposits and decomposed rocks, are 1.5 m in diameter and approximately 30 m long. The large-diameter bored pile groups consist of one two-pile group at 6 D (D = pile diameter) spacing and one two-pile and one three-pile group at 3 D spacing. This paper aims to investigate the nonlinear response of laterally loaded large-diameter bored pile groups and to study design parameters for large-diameter bored piles associated with the p-y method using a 3 D finite-element program, FLPIER. Predictions using soil parameters based on published correlations and back-analysis of the single-pile load test are compared. It is found that a simple hyperbolic representation of load-deflection curves provides an objective means to determine ultimate lateral load capacity, which is comparable with the calculated values based on Broms' theory. Lateral deflections of bored pile groups predicted using the values of the constant of horizontal subgrade reaction, suggested by Elson and obtained from back-analysis of the single pile load test, are generally in good agreement with the measurements, especially at low loads.  相似文献   

17.
Pile Responses Caused by Tunneling   总被引:2,自引:0,他引:2  
In this paper, a two-stage approach is used to analyze the lateral and axial responses of piles caused by tunneling. First, free-field soil movements are estimated based on an analytical method, and, second, these estimated soil movements are imposed on the pile in simplified boundary element analyses to compute the pile responses. Through a parametric study, it is shown that the influence of tunneling on pile response depends on a number of factors, including tunnel geometry, ground loss ratio, soil strength, pile diameter, and ratio of pile length to tunnel cover depth. Simple design charts are presented for estimating maximum pile responses and may be used in practice to assess the behavior of existing piles adjacent to tunneling operations. A published case history has been studied in which the measured lateral pile deflections are compared with those computed using the present method and fair agreement is found.  相似文献   

18.
Although pile caps have considerable ability to resist lateral loads, this resistance is often neglected in design. Published cases involving a variety of pile and cap sizes, soil conditions, and loading conditions indicate that the lateral-load resistance of pile caps can be significant, but it is difficult to generalize on the basis of these results because of the variations in conditions involved in the tests. To develop a more systematic basis for evaluating cap resistance, a field test facility was constructed to perform full-scale lateral-load tests on single piles and pile groups, with the pile caps embedded in the stiff natural soil at the site and with the pile caps backfilled with granular soil. Thirty-one tests were conducted to evaluate the lateral-load resistance of pile caps by comparing the response of pile groups with caps fully embedded and with soil removed from around the caps. The results of the tests show that pile caps provide significant resistance to lateral load. This resistance depends primarily on the stiffness and strength of the soil in front of the cap and the depth of cap embedment.  相似文献   

19.
This technical note examines some of the characteristics of behavior of pile groups containing raked piles, via a simplified and hypothetical example. Three cases are examined: (1) a group subjected to vertical and lateral loadings, with no ground movements; (2) a group subjected to vertical and lateral loadings, but with vertical ground movements also acting on the group; and (3) a group subjected to vertical and lateral loadings, but with horizontal ground movements acting on the group. In each case, the effect of pile rake on typical behavioral characteristics (group settlement, lateral deflection and rotation, and pile loads and moments) are examined. It is found that, while the presence of raked piles can provide some advantages when the group is subjected to applied vertical and lateral loadings, especially in relation to a reduction in lateral deflection, some aspects of group behavior may be adversely affected when either vertical or horizontal ground movements act on the group. Thus, caution must be exercised in employing raked piles when such ground movements are expected to occur.  相似文献   

20.
Simplified Approach for the Seismic Response of a Pile Foundation   总被引:1,自引:0,他引:1  
Pseudostatic approaches for the seismic analysis of pile foundations are attractive for practicing engineers because they are simple when compared to difficult and more complex dynamic analyses. To evaluate the internal response of piles subjected to earthquake loading, a simplified approach based on the “p-y” subgrade reaction method has been developed. The method involves two main steps: first, a site response analysis is carried out to obtain the free-field ground displacements along the pile. Next, a static load analysis is carried out for the pile, subjected to the computed free-field ground displacements and the static loading at the pile head. A pseudostatic push over analysis is adopted to simulate the behavior of piles subjected to both lateral soil movements and static loadings at the pile head. The single pile or the pile group interact with the surrounding soil by means of hyperbolic p-y curves. The solution derived first for the single pile, was extended to the case of a pile group by empirical multipliers, which account for reduced resistance and stiffness due to pile-soil-pile interaction. Numerical results obtained by the proposed simplified approach were compared with experimental and numerical results reported in literature. It has been shown that this procedure can be used successfully for determining the response of a pile foundation to “inertial” loading caused by the lateral forces imposed on the superstructure and “kinematic” loading caused by the ground movements developed during an earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号