首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For this study, an automatic control system has been developed by using a neural network and internet-based remote monitoring system for efficient operation of plants that have a serious variance of influent loading and have difficulties in appropriate maintenance, just like small wastewater treatment plants in Korea. In the control algorithm, ORP was used as the main sensor for control. At the point where the ORP value was judged to reach the "nitrate knee" of denitrification and phosphorus release, ORP indicated the state of lower saturation read by the neural network and then changed the operating condition from the reduction state to the oxidation state. For example, if ORP indicates the state of higher saturation at the point of "nitrogen breakpoint" or "ammonia valley" of nitrification, the neural network reads it and cuts off the oxygen supply and mixing. The dORP data have been used as one of the main input for the neural network. After the operation of lab-scale cyclic aeration process using an automatic control system, it has been found that regardless of loading variance, more than 95% of organic matters and more than 60% of nitrogen and phosphorus have been removed. Assuming that an internet-connected computer and a basic web browser are available, this study has developed a remote monitoring system that can monitor the operating status of small plants or any troubles with them.  相似文献   

2.
3.
This paper proposes a new process monitoring method using dynamic independent component analysis (ICA), ICA is a recently developed technique to extract the hidden factors that underlie sets of measurements, whereas principal component analysis (PCA) is a dimensionality reduction technique in terms of capturing the variance of the data. Its goal is to find a linear representation of non-Gaussian data so that the components are statistically independent. PCA aims at finding PCs that are uncorrelated and are linear combinations of the observed variables, while ICA is designed to separate the ICs that are independent and constitute the observed variables. The dynamic ICA monitoring method is applying ICA to the augmenting matrix with time-lagged variables. The dynamic monitoring method was applied to detect and monitor disturbances in a full-scale biological wastewater treatment (WWTP), which is characterized by a variety of dynamic and non-Gaussian characteristics. The dynamic ICA method showed more powerful monitoring performance on a WWTP application than the dynamic PCA method since it can extract source signals which are independent of time and cross-correlation of variables.  相似文献   

4.
Control and optimisation of plant processes has become a priority for WWTP managers. The calibration and verification of a mathematical model provides an important tool for the investigation of advanced control strategies that may assist in the design or optimization of WWTPs. This paper describes the calibration of the ASM2d model for two full scale biological nitrogen and phosphorus removal plants in order to characterize the biological process and to upgrade the plants' performance. Results from simulation showed a good correspondence with experimental data demonstrating that the model and the calibrated parameters were able to predict the behaviour of both WWTPs. Once the calibration and simulation process was finished, a study for each WWTP was done with the aim of improving its performance. Modifications focused on reactor configuration and operation strategies were proposed.  相似文献   

5.
污水处理厂的安全自控系统   总被引:2,自引:1,他引:1  
随着污水处理行业的快速发展,污水处理厂安全越来越成为工艺稳定运行的关键.针对控制系统本身的安全性及对相应控制设备和工艺的安全性,提出了污水处理厂的安全自控系统原则.并以实际自控系统为例,说明安全自控系统的组成及实现.  相似文献   

6.
The wastewater characteristics of low organic strength coupled with low temperature would be considerable variables for design and operation of biological nutrient removal (BNR) systems. But temperature studies have mostly been focused on individual process with biological phosphorus removal, nitrification and denitrification, respectively. Overall temperature effects on BNR system may not be fully represented by sum of results of separated studies on biological nutrient removal steps. The operating result of a retrofitted full scale unit along with laboratory-scale BNR unit indicated 90% of nitrification was possible at temperature as low as 8°C. However, the denitrification was turned out to be a key step to regulate the overall nutrient removal efficiencies. When the operating temperature dropped down, a rapid decrease of phosphorus removal efficiencies was observed by the nitrate in return sludge. If nitrification was not well developed, phosphorus removal returned to the normal efficiency even at low temperature of 5°C. The phosphorus removal mechanism was not influenced at this low temperature.  相似文献   

7.
Upgrading of wastewater treatment plants under maximum use of existing structures is often an important requirement, but also useful due to a number of aspects. Because of a change in legal effluent requirements, a number of plants in Austria, typically aged 20+ years, were required to be extended. The two stage activated sludge HYBRID-process often provides an interesting design alternative for such plant upgrades, especially in case an anaerobic sludge treatment stage already exists. It provides high nutrient removal capacity at low area demand. The latter is especially important in cases where no or very limited extension area is available making it the key factor to preserve a site for future use. Based on two full stage case studies the adaptation of the plant layout, first operation results and a synthetic cost comparison to a conventional (single stage) plant extension are given.  相似文献   

8.
The TELEMAC project brings new methodologies from the Information and Science Technologies field to the world of water treatment. TELEMAC offers an advanced remote management system which adapts to most of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment. The TELEMAC system takes advantage of new sensors to better monitor the process dynamics and to run automatic controllers that stabilise the treatment plant, meet the depollution requirements and provide a biogas quality suitable for cogeneration. If the automatic system detects a failure which cannot be solved automatically or locally by a technician, then an expert from the TELEMAC Control Centre is contacted via the internet and manages the problem.  相似文献   

9.
Tertiary filtration can be proposed in small wastewater treatment plants with impact on protected water bodies. Rotating disk filters may be adopted, in respect to conventional sand filters, when low availability of space and low investment costs are the prevailing conditions. The overall objective of this research was to evaluate the filtration efficiency of rotating disk filters; to compare effectiveness with traditional sand filters; to analyse thoroughly the importance of particle size distribution in wastewater tertiary filtration. In the experimental activity, conventional wastewater quality parameters were investigated and particle size distribution (PSD) was characterized to discuss the filter effectiveness. The effect of design and operation parameters of tertiary filters were discussed related to particle removal curves derived from particles counts. Analysis of particle size distribution can be very useful to help comprehension of filtration processes, design of filtration treatments and to decide the best measures to improve filter performance.  相似文献   

10.
This work presents the performances of a new odour scrubber. The reactor is packed with a new structure which enables co-current operations at high gas velocities. Energy consumption and removal efficiency of sulphur compounds by oxidative alkaline scrubbing were studied. The influence of both superficial gas (U(SG)) and liquid (U(SL)) velocities, ranging from 5.6 to 28 m.s(-1) and 0.016 to 0.055 m.s(-1) respectively, were quantified. Thus, the range of 0.5 to 5 liquid-to-gas mass ratio (L/G) was studied. A comparison has been made with a previous study on static mixers (SM) and with classical random packed towers (PT). It has been shown that superficial liquid and gas velocities have a significant influence on these parameters. Hydrogen sulphide (H2S) abatement reached values up to 99%. As concerns methylmercaptan (CH3SH), the maximal removal efficiency was 87%. As a result, if well scaled-up, our reactor can be a small single stage efficient apparatus for the elimination of low concentrations of sulphur compounds as H2S and CH3SH in high flow rates of polluted gas effluents.  相似文献   

11.
The fate of nutrients in the modern effluent treatment plant depends on several factors, for example type of treatment plant, availability of nutrients in the specific effluent, dosing of nutrients and sludge age/production. New technologies with the aim to increase the efficiency and stability of the conventional activated sludge process have strongly affected the possibilities to control discharge of nutrients in pulp and paper effluents. A paradox is that a reduction of organic material may often lead to an increase of nutrient discharges. It is of the utmost importance that the operators have good knowledge of the factors affecting nutrient uptake and release in order to minimise nutrient discharge and obtain optimal plant performance. Dosing of nitrogen and phosphorus is one key factor in the sensitive balance in most pulp and paper effluent treatment plants. Correct dosing is crucial as high or low doses might lead not only to increased discharge of nutrients but also to severe operational problems with poor sludge quality, which in turn affects the plant performance for longer periods.  相似文献   

12.
SBR technology is considered an alternative to conventional processes such as Phoredox, Five-stage Bardenpho, among the others for treating nutrients in wastewaters. It is especially applicable to small communities of a just few people to a population equivalent (p.e) up to 4000. In this paper, biological nutrient removal using SBR technology in a single reactor is presented. Biological nutrient removal requires a sequence of anaerobic-anoxic-aerobic phases with multiple feeding events over one cycle. This filling strategy was adapted to enhance denitrification and phosphate release, using the easily biodegradable organic matter from the wastewater. In spite of using this feeding strategy, the organic matter concentration can be insufficient. The results show that biological nutrient removal was successfully achieved by using only one reactor, working with a low organic matter concentration in the influent (C/N/P ratio of 100:12:1.8). Nevertheless, when the C/P ratio was lower than 36 g COD x g(-1) P-P04, an accumulation of phosphate was observed. After that, the system responded quickly and returned to ideal conditions (C/P ratio of 67 g COD x g(-1) P-PO4), taking only 15 days to achieve the complete nutrient removal. Furthermore, the operational conditions and the synthetic wastewater used conferred a selective advantage to polyphosphate accumulating organisms (PAOs) over glycogen accumulating non-poly-P organisms (GAOs) as shown by the FISH analysis performed.  相似文献   

13.
Interest in real-time model-based control is increasing as more and more facilities are being asked to meet stricter effluent requirements while at the same time minimizing costs. It has been identified that biological process models and automated process control technologies are being used at wastewater treatments plants throughout the world and that great potential for optimising biotreatment may exist with the integration of these two technology areas. According to our experience, wastewater treatment plants are indeed looking for ways to successfully integrate their modelling knowledge into their process control structure; however, there are practical aspects of this integration that must be addressed if the benefits of this integration are to be realised. This paper discusses the practical aspects of monitoring, filtering and analysing real sensor data with an aim to produce a reliable real-time data stream that might be used within a model-based control structure. Several real case study examples are briefly discussed in this paper.  相似文献   

14.
To establish an automatic control system of external carbon addition in biological nitrogen removal, a bench-scale sequencing batch reactor with real-time control strategy was designed in this study. An oxidation-reduction potential (ORP) profile was used for automatic control of external carbon addition. The mean removal efficiency of total organic carbon was over 98%. Complete denitrification in an anoxic phase and complete denitrification and nitrification in anoxic and oxic phases were accomplished, respectively, because the oxic and anoxic periods were also appropriately controlled with ORP and pH profiles, respectively. Mean removal efficiency of total nitrogen was over 95%. When concentration of influent wastewater was changed, volume of additional carbon was automatically changed with the influent fluctuation, and flexible hydraulic retention time was achieved in this system.  相似文献   

15.
This paper deals with the performances obtained in full scale anaerobic digesters co-digesting waste activated sludge from biological nutrients removal wastewater treatment plants, together with different types of organic wastes (solid and liquid). Results showed that the biogas production can be increased from 4000 to some 18,000 m3 per month when treating some 3-5 tons per day of organic municipal solid waste together with waste activated sludge. On the other hand, the specific biogas production was improved, passing from 0.3 to 0.5 m3 per kgVS fed the reactor, when treating liquid effluents from cheese factories. The addition of the co-substrates gave minimal increases in the organic loading rate while the hydraulic retention time remained constant. Further, the potentiality of the struvite crystallisation process for treating anaerobic supernatant rich in nitrogen and phosphorus was studied: 80% removal of phosphorus was observed in all the tested conditions. In conclusion, a possible layout is proposed for designing or upgrading wastewater treatment plants for biological nutrients removal process.  相似文献   

16.
A supervisory expert system based on fuzzy logic rules was developed for diagnosis and control of a laboratory- scale plant comprising anaerobic digestion and anoxic/aerobic modules for combined high rate biological N and C removal. The design and implementation of a computational environment in LabVIEW for data acquisition, plant operation and distributed equipment control is described. A step increase in ammonia concentration from 20 to 60 mg N/L was applied during a trial period of 73 h. Recycle flow rate from the aerobic to the anoxic module and bypass flow rate from the influent directly to the anoxic reactor were the output variables of the fuzzy system. They were automatically changed (from 34 to 111 L/day and from 8 to 13 L/day, respectively), when new plant conditions were recognised by the expert system. Denitrification efficiency higher than 85% was achieved 30 h after the disturbance and 15 h after the system response at an HRT as low as 1.5 h. Nitrification efficiency gradually increased from 12 to 50% at an HRT of 3 h. The system proved to react properly in order to set adequate operating conditions that led to timely and efficient recovery of N and C removal rates.  相似文献   

17.
卿晓霞  王诚  周健  余建平 《给水排水》2012,38(1):103-106
研究开发了一种成本低、操作简单、经济适用的小型污水处理自动控制系统。该系统由一台控制器和一台上位机通过RS-485串口连接组成,具备污水处理全流程自动控制、工艺流程显示、设备运行状态监视、故障报警、趋势图绘制、报表制作等功能。控制器CPU选用了技术成熟的AT89C52,并扩展了X5045芯片。控制器硬件采用模块化结构,按照一般小型污水处理厂规模设计开关量输入板2块,共64路;开关量输出板1块,共32路;开关量输入/输出板1块,各16路;模拟量输入8路、输出4路。各种输入/输出板可针对不同污水处理厂实际规模进行配置。  相似文献   

18.
Thousands of sparsely populated communities scatter in the remote areas of northern Canada. It is economically preferable to adopt the decentralized systems to treat the domestic wastewater because of the vast human inhabitant distribution and cold climatic conditions. Electro-technologies such as electrofiltration, elctrofloatation, electrocoagulation and electrokinetic separation have been applied in water and conventional wastewater treatment for decades due to the minimum requirements of chemicals as well as ease of operation. The membrane bioreactor (MBR) is gaining popularity in recent years as an alternative water/wastewater treatment technology. However, few studies have been conducted to hyphenate these two technologies. The purpose of this work is to design a novel electrically enhanced membrane bioreactor (EMBR) as an alternative decentralized wastewater treatment system with improved nutrient removal and reduced membrane fouling. Two identical submerged membranes (GE ZW-1 hollow fiber module) were used for the experiment, with one as a control. The EMBR and control MBR were operated for 4 months at room temperature (20 ± 2 °C) with synthetic feed and 2 months at 10 °C with real sewage. The following results were observed: (1) the transmembrane pressure (TMP) increased significantly more slowly in the EMBR and the interval between the cleaning cycles of the EMBR increased at least twice; (2) the dissolved chemical oxygen demand (COD) or total organic carbon (TOC) in the EMBR biomass was reduced from 30 to 51%, correspondingly, concentrations of the extracellular polymeric substances (EPS), the major suspicious membrane foulants, decreased by 26-46% in the EMBR; (3) both control and EMBR removed >99% of ammonium-N and >95% of dissolved COD, in addition, ortho-P removal in the EMBR was >90%, compared with 47-61% of ortho-P removal in the MBR; and (4) the advantage of the EMBR over the conventional MBR in terms of membrane fouling retardation and phosphorus removal was further demonstrated at an operating temperature of 10 °C when fed with real sewage. The EMBR system has the potential for highly automated control and minimal maintenance, which is particularly suitable for remote northern applications.  相似文献   

19.
Long term lab-scale and bench-scale experiments were performed to investigate the feasibility of the anaerobic process to treat wastewater from a pulp and viscose fibre industry. Anaerobic wastewater treatment enables an advantageous combination of COD, sulphate and zinc removal from viscose wastewater. The aim of the investigations was to evaluate the influence of the free sulphide concentration on COD and sulphate removal efficiency and on the substrate competition between sulphate reducing and methanogenic bacteria. Since the wastewater did not contain enough COD for complete sulphate removal it was of major interest to determine favourable process conditions to steer the substrate competition in favour of sulphate reduction. Further experiments at bench-scale permitted us to evaluate applicable COD-loading rates and gain fundamental information about process stability and optimization for large-scale implementation. The present work will deal with the most relevant experimental results achieved and with important technological aspects of anaerobic treatment of viscose wastewater.  相似文献   

20.
The pilot test of a new alternative for small wastewater treatment system has been conducted for two years. It consists of a hybrid bioreactor and the expert system including the programmable logic controller and human-machine interface. In order to monitor its status, the real-time data was transferred from the remote station to the central station via a wireless local area network. More efficient and stable performances were observed at automatic operating mode compared with the manual. On an average, COD, SS, T-N and T-P concentrations in the effluent from the hybrid bioreactor were less than 14, 7, 12 and 0.9 mg/L, respectively. According to the result from laboratory experiments, the quality of treated wastewater with chemical coagulation process followed by sand filtration was enough to be utilized again if a final disinfection step is included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号