首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel vapor-generation technique is described for mercury determination in aqueous solutions. Without need for a chemical reducing agent, dissolved mercury species are converted to volatile Hg vapor in a solution cathode glow discharge. The generated Hg vapor is then transported to an inductively coupled plasma for determination by atomic emission spectrometry. Mercury vapor is readily generated from a background electrolyte containing 0.1 M HNO 3. Vapor generation efficiency was found to be higher by a factor of 2-3 in the presence of low molecular weight organic acids (formic or acetic acids) or alcohols (ethanol). Optimal conditions for discharge-induced vapor generation and reduced interference from concomitant inorganic ions were also identified. However, the presence of chloride ion reduces the efficiency of Hg-vapor generation. In the continuous sample introduction mode, the detection limit was found to be 0.7 microg L (-1), and repeatability was 1.2% RSD ( n = 11) for a 20 microg L (-1) standard. In comparison with other vapor generation methods, it offers several advantages: First, it is applicable to both inorganic and organic Hg determination; organic mercury (thiomersal) can be directly transformed into volatile Hg species without the need for prior oxidation. Second, the vapor-generation efficiency is high; the efficiency (with formic acid as a promoter) is superior to that of conventional SnCl 2-HCl reduction. Third, the vapor generation is extremely rapid and therefore is easy to couple with flow injection. The method is sensitive and simple in operation, requires no auxiliary reagents, and serves as a useful alternative to conventional vapor generation for ultratrace Hg determination.  相似文献   

2.
Li H  Luo Y  Li Z  Yang L  Wang Q 《Analytical chemistry》2012,84(6):2974-2981
We reported novel Ag-TiO(2)- and ZrO(2)-based photocatalytic vapor generation (PCVG) systems as effective sample introduction techniques for further improving the sensitivity of the atomic spectrometric determination of selenium for the first time, in which the conduction band electron served as a "reductant" to reduce selenium species including Se(VI) and convert them directly into volatile H(2)Se, which was easily separated from the sample matrix and underwent more effectively subsequent atomization and/or ionization. These two PCVG systems helped us to overcome the problem encountered in the most conventional KBH(4)/OH(-)-H(+) system, in that Se(VI) was hardly converted into volatile selenium species without the aid of prereduction procedures. The limits of detection (LODs) (3σ) of the four most typical Se(IV), Se(VI), selenocystine ((SeCys)(2)), and selenomethionine (SeMet) species were, respectively, down to 1.2, 1.8, 7.4, and 0.9 ng mL(-1) in UV/Ag-TiO(2)-HCOOH, and 0.7, 1.0, 4.2, and 0.5 ng mL(-1) in UV/ZrO(2)-HCOOH with the relative standard deviations (RSDs) lower than 5.1% (n = 9 at 1 μg mL(-1)) when using atomic fluorescence spectrometry (AFS) under flow injection mode. They reached 10, 14, 18, and 8 pg mL(-1) in UV/Ag-TiO(2)-HCOOH, and 6, 7, 10, and 5 pg mL(-1) in UV/ZrO(2)-HCOOH with the RSDs lower than 4.4% (n = 9 at 10 ng mL(-1)) when using inductively coupled plasma mass spectrometry (ICPMS). After the two PCVG systems were validated using certified reference materials GBW(E)080395 and SELM-1, they were applied to determine the total Se in the selenium-enriched yeast sample and used as interfaces between high-performance liquid chromatography (HPLC) and AFS or ICPMS for selenium speciation in the water- and/or enzyme-extractable fractions of the selenium-enriched yeast.  相似文献   

3.
Sun YC  Chang YC  Su CK 《Analytical chemistry》2006,78(8):2640-2645
We have developed an UV/nano-TiO2 vapor generation (VG) device that when coupled between a chromatographic column and an ICP mass spectrometer provides a simple and sensitive hyphenated method for the determination of Se(IV) and Se(VI) without the need to use conventional chemical VG techniques. Because our proposed VG device allows both Se(IV) and Se(VI) species in the column effluent to be converted on-line into volatile Se products, which are then measured directly by the ICPMS, the safety risks and the probability of contamination arising from the use of additional chemicals are both low. To achieve the maximum signal intensity, we optimized a number of the operating parameters of the UV/nano-TiO2 VG device, including the acidity, the amounts of TiO2 and formic acid, and the length of the reaction coil, with respect to their effects on the reduction efficiency of the analyte species. This hyphenated method achieves excellent detection limits-0.06 and 0.03 ng mL(-1) for Se(IV) and Se(VI), respectively-because of the high efficiencies of the conversions of Se(IV) and Se(VI) to their respective volatile products and the lower blank level achieved, relative to those of other traditional systems. In addition, because the conversion efficiency of the analyte selenium species reached its maximum level within 36 s of irradiation, the working time (approximately 12 min) was limited primarily by time required for the chromatographic separation. A series of validation experiments-analysis of the 1643e Standard Reference Material and natural water samples-indicated that our proposed methods can be applied satisfactorily to the determination of inorganic selenium species in water samples.  相似文献   

4.
Unknown and controversial aspects related to the mechanisms of hydrolysis of borane complexes and to the mechanisms of chemical vapor generation for trace element determination in strongly acidic media (0.01-10 M HCl) have been investigated and clarified. The overall hydrolysis rates of borane complexes (BH(4)(-), H(3)N-BH(3)) in the acidity range of 0.2-10 M HCl were several orders of magnitude lower than those predicted by kinetics laws and obtained in the pH range of 3.8-14. The decomposition of the borane complexes takes place stepwise and proceeds through the formation of hydroboron intermediates, L(x)()BH(4)(-)(x)()(n)() (x = 1, 2, 3), where L could be one or more species among the donor groups H(2)O, NH(3), OH(-), and Cl(-) and n is the charge of the hydroboron species (n = 0, +1, -1, depending on L). Some intermediates present surprisingly long lifetimes at elevated acidities and play a key role in determining both the overall hydrolysis rates of borane complexes and the reactivity of Hg(II), As(III), Sb(III), Bi(III), Se(IV), Te(IV), and Sn(IV) in chemical vapor generation for trace element determination. Atomic absorption experiments demonstrated that almost all trihydroboron species (LBH(3)(n)()), dihydroboron species (L(2)BH(2)(n)()), and monohydroboron species (L(3)BH(n)()) play an active role in the generation of elemental mercury and stibine. Some of these intermediates are inactive or play a marginal role in the generation of arsine, bismuthine, and hydrogen selenide. Hydrogen telluride is preferentially formed by those hydroboron species, which are stable in strongly acidic conditions, while the same species are unreactive in the generation of stannane. The collected experimental evidence is in agreement with the general reactivity of the elements in chemical vapor generation techniques and, together with other literature data, definitely rule out the hypothesis of "nascent hydrogen" as a possible mechanism of chemical vapor generation by borane complex derivatization.  相似文献   

5.
Gold was determined in ore samples following generation, separation, collection on a graphite cuvette inner wall, and atomization of its volatile species formed by combining an acidified sample solution with an aqueous sodium tetrahydroborate solution at room temperature. A detection limit of 2.6 microg L(-1) (3sigma) was obtained with a 5.0 mL sample volume. Precision of replicate measurements was typically 10% RSD. The overall efficiency of the volatile species generation, transport, and trapping process was 0.4%. Atomization of gold from Pd, Ir, Cu, Ag, and W coated graphite cuvettes, following by trapping of the gaseous volatile gold species on these surfaces, has been investigated. Pd coating was found to decrease the sensitivity. Five microg of Ir, 20 microg of Cu, 20 microg of Ag, and 5 microg of W were chosen as optimum masses. W treatment was the best one for sensitivity enhancement, having an improvement factor of 2.4. Silanization of glass surfaces significantly decreased memory effects; improved peak shapes were thus obtained for flow injection vapor generation atomic absorption spectrometry (FI-VGAAS). The method described in this study was used for the determination of gold in an ore reference material, Gold Ore (MA-1b), Canadian Reference Materials Program.  相似文献   

6.
In this study three major types of preconcentration methods based upon different principles (cation exchange, physical absorption and hydrophobic extraction) were evaluated and optimized for the extraction and determination of three highly toxic heavy metals namely Cd, Pb and Sn by graphite furnace and hybrid generation atomic absorption spectrometry in real samples. The optimum analytical conditions were examined and the analytical features of each method were revealed and compared. Detection limits as low as 0.003-0.025 microg L(-1) for Cd(2+), 0.05-0.10 microg L(-1) for Pb(2+) and 0.1-0.25 microg L(-1) for Sn(4+) depending on the extraction method were obtained with RSD values between 3.08% and 6.11%. A preliminary assessment of the pollution status of three important natural ecosystems in Epirus region (NW Greece) was performed and some early conclusions were drawn and discussed.  相似文献   

7.
A Dowex 1X2 resin separation technique followed by analysis with atomic absorption spectroscopy was evaluated for the study of inorganic selenium speciation in groundwaters. After Se(IV) and Se(VI) were retained on the resin column, Se(IV) and Se(VI) were eluted out by 0.1 and 1M nitric acid solutions. The method detection limit was 5.6 ng/L for both Se(IV) and Se(VI). Analysis of synthetic solutions consistently yielded more than 90% recovery of these two selenium forms with negligible cross-contamination. The results of spiked well waters show that this method can be applied at ultra-trace level of Se in groundwater and the interference of chloride ion can be neglected. Water samples collected from the monitoring wells in the Science-based Industrial Park, Hsin-Chu, Taiwan, were analyzed. Average dissolved selenium concentrations were 32.1+/-17.6 ng/L. The proportion of Se(VI) to the total dissolved selenium ranged from 47.6 to 61.2% and an average of 53.8% in water samples analyzed.  相似文献   

8.
Following a preliminary work (Costas-Mora, I.; Romero, V.; Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Anal. Chem.2011, 83, 2388-2393), a quenching mechanism has been established for the selective detection of Se (as selenium hydride) by microfluorospectrometry using CdSe quantum dots (QDs) as luminescent probes stabilized with hexadecylamine and confined in an organic droplet. For this purpose, luminescence, luminescence lifetime, UV-vis absorption, total reflection X-ray fluorescence, transmission electron microscopy, and atomic force microscopy measurements were performed. The presence of stabilizing agents of QDs in the droplet was found to cause a critical effect on both extraction efficiency of selenium hydride in the drop and luminescence quenching. A self-quenching mechanism due to the aggregation of QDs is suggested. Aggregation is thought to occur as a result of the binding between selenide trapped into the organic drop as selenium hydride and Cd(2+) present in the surface of QDs, which in turn, may cause the loss of stabilizing hexadecylamine groups. After full optimization of main variables influencing the luminescent response, the analytical performance was established. A detection limit as low as 0.08 μg L(-1) Se(IV) and a repeatability expressed as relative standard deviation of 4.6% were obtained. The method was validated against CRM NWTM-27.2 lake water, and a recovery study was performed with synthetic seawater. The use of CdSe as luminescent probes in an organic drop may constitute an extremely selective, sensitive, and miniaturized assay for in situ detection of Se(IV) in water.  相似文献   

9.
Sodium borohydride-based hydride generation was automated by using programmable flow within the lab-on-valve module. Mercury vapor, generated in the reaction mixture, was extracted in a gas/liquid separator. The gas-expansion separator was miniaturized and compared with the performance of a novel gas separator that exploits the combination of Venturi effect and reduced pressure. Cold vapor atomic spectroscopy was used as a model system, with detection of mercury by absorption at 254 nm and limit of detection of 9 microg of Hg/L, using 300 microL of sample and 100 microL of borohydride. This work introduces, for the first time, sequential injection technique for hydride generation, highlights advantages of using programmable flow, and outlines means for miniaturization of assays based on spectroscopy of volatile species.  相似文献   

10.
Volatile species of the conventional hydride-forming elements (As, Bi, Sb, Se, Sn, Pb, Cd, Te), Hg, transition metals (Ni, Co, Cu, Fe), noble metals (Ag, Au, Rh, Pd, Pt), and nonmetals (I, S) were generated following UV irradiation of their aqueous solutions to which low molecular weight carboxylic acids (formic, acetic, propionic) had been added. Free radicals arising from photodissociation of the latter provide a new and useful alternative to the common methods of chemical/electrochemical vapor generation techniques for the determination of these analytes by atomic spectrometry. Quantitative estimates of the efficiencies of these generation processes were not undertaken, although calculated signal-to-background ratios (>1500 for 5 ng/mL As, Sb, Bi, Se, and Te; 20 for 10 ng/mL Sn, Cu, Rh, Au, Pd, Pt, and Cd; 2400 for 1 ng/mL Hg; and 1000 for Co using ICP-TOF-MS detection) do provide clear evidence of the efficacy of this approach for sample introduction. In the case of Ni and Se, the tetracarbonyl and alkylated selenium compounds have been identified, respectively.  相似文献   

11.
A new, simple, and reproducible method is described for the determination of selenium(IV) based on differential pulse cathodic stripping voltammetry. The optimized experimental conditions are as follows: selenium(IV) ions in an acidic medium (0.06 M HCl-0.07 M HNO(3)) are electrodeposited on a rotating silver disk electrode as silver selenide at -0.4 V vs SCE for 30 min; the deposit is then cathodically stripped in another solution (2 M NaOH) at a scan rate of 50 mV s(-1) to -1.2 V vs SCE. The cathodic stripping results in only a single well-defined peak at about -0.95 V vs SCE. The calibration (peak height vs selenium concentration) graph is linear up to at least 40 ng mL(-1) of selenium(IV) and passes through the origin, with a relative standard deviation of 2.7% for 20 ng mL(-1) (n = 5). The detection limit (3σ) is 0.20 ng mL(-1). The possible interferences have been evaluated. Dissolved oxygen does not affect the peak height of selenium. The electrode can be used repeatedly at least 20 times with excellent reproducibility without further polishing. The proposed method is an improvement over the existing cathodic stripping techniques.  相似文献   

12.
Yan XP  Yin XB  He XW  Jiang Y 《Analytical chemistry》2002,74(9):2162-2166
A flow injection on-line sorption preconcentration and separation in a knotted reactor (KR) was coupled to hydride generation atomic fluorescence spectrometry (HG-AFS) for speciation of inorganic arsenic in natural water samples. The method involved on-line formation of the As(III)-pyrrolidinedithiocarbamate (PDC) complex over a sample acidity of 0.001-0.1 mol L(-1) HCl, its adsorption onto the inner walls of the KR made from 150-cm long x 0.5-mm i.d. PTFE tubing, elution withmol L(-1) HCl, and detection by HG-AFS. Total inorganic arsenic was determined after prereduction of As(V) to As(III) with 1% m/v L-cysteine. The concentration of As(V) was calculated by the difference of the total inorganic arsenic and As(III). A 1 mol L(-1) concentration of HCl was employed not only as the efficient eluent but also as the required medium for subsequent hydride generation. Potential factors that affect adsorption, rinsing, elution, and hydride generation were investigated in detail. The low cost, easy operation, and high sensitivity are the obvious advantages of the present system. With consumption of a 6 mL sample solution, an enhancement factor of 11 and a detection limit (3s) of 0.023 microg L(-1) As(III) were obtained at a sample throughput of 32 h(-1). The precision for 14 replicate measurements of 1 microg L(-1) As(III) was 1.3% (RSD). The recoveries from natural water samples varied from 96.7 to 105% for 2 microg L(-1) of As(III) spike and from 97.1 to 107% for 2 microg L(-1) of As(V) spike. The analytical results obtained by the present method for total arsenic in the certified reference materials, SLRS-4 (river water) and NASS-5 (seawater), agreed well with the certified values. The developed method was also successfully applied to the speciation of inorganic arsenic in local natural water samples.  相似文献   

13.
Wang Z  Gao YX  Belzile N 《Analytical chemistry》2001,73(19):4711-4716
A microwave preparation procedure is proposed for selenium speciation in natural and drinking waters. Different chemical reagents were tested, and the conditions for Se speciation were optimized. The effect of the different reagents on various oxidation states of selenium under microwave digestion conditions was investigated. Most of the Se(-II) was converted to selenite when digested with HNO3 and <20% to selenate. The digestion with H2O2/H2SO4 can change most Se species into Se(IV). The concentration of Se(IV) in the samples was then determined by HPLC with a fluorescence detector after derivatization with 2,3-diamino-naphthalene (DAN). The microwave preparation procedure allows Se speciation in water samples. Se(IV) was determined after concentrating the sample under nitrogen protection. The amount of Se(IV) and Se(VI) was measured by adding an equal volume of concentrated hydrochloric acid to water sample to reduce Se(VI) to Se(IV). Then the amount of Se(VI) can be calculated by subtraction. The total selenium can be determined after digestion with H2O2/H2SO4, or after digestion with HNO3 followed by reduction with concentrated hydrochloric acid. Selenium (-II, 0) was calculated by subtracting inorganic Se(IV+VI) from the total. Detection limits of 0.0066 ng and 0.0096 ng Se were obtained for HNO3 and H202/H2SO4 as digestion reagents, respectively. The total Se in the four water samples tested range from 0.20 to 0.90 microg L(-1). Among them the dominant form was Se(VI) with the exception of pond waters where Se(-II) predominated.  相似文献   

14.
Yang M  Xu Y  Wang JH 《Analytical chemistry》2006,78(16):5900-5905
A novel configuration of a lab-on-valve (LOV) system was fabricated and applied for chemiluminescence (CL) detection by integrating a demountable Z-type flow cell onto the LOV unit. A bismuthate immobilized microcolumn was incorporated in one port of the LOV for in situ oxidation of KBr and generation of bromine as oxidant for the bromine-hydrogen peroxide-tetracycline (TC) chemiluminescent reaction. The nascent bromine reacts with hydrogen peroxide and produces a weak CL signal, the intensity of which was significantly enhanced in the presence of TC following an energy-transfer mechanism. A novel procedure for tetracycline quantification was therefore developed based on the present system. When compared with the reported flow injection-CL methods for TC, this procedure not only provided an improved detection limit of 2.0 microg L(-)(1) but also minimized sample and reagent consumption. A linear range of 6.0-10 000 microg L(-)(1) was derived along with RSD values of 5.9 (at the concentration level of quantification limit) and 2.2% (at 50 microg L(-)(1)), and a sampling frequency of 120 h(-)(1) was achieved. The system was validated with a National Standard Procedure (GB/T 18932.4-2002, HPLC with UV detection) by measuring TC contents in commercial milk samples.  相似文献   

15.
The heavy metal mercury (Hg) is a neurotoxin known to have a serious health impact even at relatively low concentrations. A slurry method was developed for the sensitive and precise determination of mercury in human serum blood samples by cold vapor generation coupled to atomic fluorescence spectrometry (CV-AFS). All variables related to the slurry formation were studied. The optimal hydrochloric concentration and tin(II) chloride concentration for CV generation were evaluated. Calibration within the range 0.1-10 microg L(-1) Hg was performed with the standard addition method, and compared with an external calibration. Additionally, the reliability of the results obtained was evaluated by analyzing mercury in the same samples, but submitted to microwave-assisted digestion method. The limit of detection was calculated as 25 ng L(-1) and the relative standard deviation was 3.9% at levels around of 0.4 microg L(-1)Hg.  相似文献   

16.
A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH(3) generation using 3.5 mol L(-1) HCl as carrier solution and 0.35% (m/v) NaBH(4) in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl(-), SO(4)(2-), NO(3)(-), HPO(4)(2-), HCO(3)(-) on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C(6)H(8)O(6) solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5 μg L(-1) and 0.6 μg L(-1) for As(III) and inorganic total As, respectively, were obtained for a 500 μL sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60 samplesh(-1). The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species separation was performed through the employ of a serial connection of membrane filters and anion-exchange cartridges. Advantages derived from this approach were evaluated. HPLC-ICPMS was employed to study the consistency of the analytical results.  相似文献   

17.
Yan XP  Yin XB  Jiang DQ  He XW 《Analytical chemistry》2003,75(7):1726-1732
A novel method for speciation analysis of mercury was developed by on-line hyphenating capillary electrophoresis (CE) with atomic fluorescence spectrometry (AFS). The four mercury species of inorganic mercury Hg(II), methymercury MeHg(I), ethylmercury EtHg(I), and phenylmercury PhHg(I) were separated as mercury-cysteine complexes by CE in a 50-cm x 100-microm-i.d. fused-silica capillary at 15 kV and using a mixture of 100 mmol L(-1) of boric acid and 12% v/v methanol (pH 9.1) as electrolyte. A novel technique, hydrostatically modified electroosmotic flow (HSMEOF) in which the electroosmotic flow (EOF) was modified by applying hydrostatical pressure opposite to the direction of EOF was used to improve resolution. A volatile species generation technique was used to convert the mercury species into their respective volatile species. A newly developed CE-AFS interface was employed to provide an electrical connection for stable electrophoretic separations and to allow on-line volatile species formation. The generated volatile species were on-line detected with AFS. The precisions (RSD, n = 5) were in the range of 1.9-2.5% for migration time, 1.8-6.3% for peak area response, and 2.3-6.1% for peak height response for the four mercury species. The detection limits ranged from 6.8 to 16.5 microg L(-1) (as Hg). The recoveries of the four mercury species in the water samples were in the range of 86.6-111%. The developed technique was successfully applied to speciation analysis of mercury in a certified reference material (DORM-2, dogfish muscle).  相似文献   

18.
We have studied the protective properties of thin films of gallium selenide formed by the method of heterovalent substitution on the surface of GaAs substrates. The data of transmission (Hitachi H-800) and scanning (JEOL JSM-638 OLV) electron microscopy showed that GaAs substrates treated with selenium vapor produced a more pronounced orienting action on the subsequent deposition of GaAs as compared to the substrates covered with a natural oxide. The processing of a GaAs substrate in selenium vapor followed by the removal of the resulting Ga2Se3 layer increases the degree of smoothness of the substrate surface on the atomic level.  相似文献   

19.
Lu YK  Sun HW  Yuan CG  Yan XP 《Analytical chemistry》2002,74(7):1525-1529
Hydride generation atomic fluorescence spectrometry (HG-AFS) has been used for determination of hydride-forming elements because of its high sensitivity, simplicity, and low costs, but most of such work has been concentrated on single element analysis, and reports dealing with multielement determination by HG-nondispersive (ND)AFS are rare. In this work, a sensitive HG-NDAFS method was developed for simultaneous determination of trace cadmium and arsenic in biological materials. The conditions for the generation of volatile cadmium and arsenic species from the reaction with KBH4 in aqueous solution were investigated using a double-channel AFS integrated with an intermittent flow reactor. Like thiourea and Co(II), ascorbic acid was found to significantly enhance the generation efficiency of volatile Cd and As species. The interferences of coexisting ions were evaluated. Under optimal conditions, the detection limits for Cd and As were determined to be 10 and 150 ng L(-1), respectively. The precision for 11 replicate determinations at the 1 microg L(-1) Cd level and the 10 microg L(-1) As level were 3.5 and 2.7% (RSD), respectively. The recoveries of spike analytes in the biological samples studied ranged from 94 to 109%. The proposed method was successfully applied to the simultaneous determination of Cd and As in a variety of biological samples.  相似文献   

20.
Amineboranes of the type L-BH3 (L = NH3; tert-BuNH2; Me2NH; Me3N) and sodium cyanotrihydroborate(III) (NaBH3CN) have been tested as derivatization reagents in the generation of volatile hydrides and elemental mercury following aqueous phase reaction with ionic species of Hg(II), As(III), As(V), Sb(V), Sb(III), Bi(III), Se(IV), Se(VI), Te(IV), and Te(VI). Continuous flow generation atomic absorption spectrometry coupled with a flameless quartz tube atomizer (T = 25 degrees C) and a miniature argon-hydrogen diffusion flame atomizer were employed for the detection of mercury vapors and volatile hydrides, respectively. All of the reductants were able to reduce Hg(II) to the elemental state, giving sensitivities comparable to NaBH4 reduction. Under reaction conditions giving maximum sensitivity for hydride generation with NaBH4, only some amineboranes are able to produce volatile hydrides from all the elements. No evidence of hydride formation was observed from the Se(VI) and Te(VI). In general, the reducing power decreased in the order NaBH4 > H3N-BH3 > tert-BuNH2-BH3 > NaBH3CN > or = Me2HN-BH3 > Me3N-BH3. In comparison with THB, amineboranes and NaBH3CN allowed, in general, a better control of interference effects of Fe(III), Ni(II), Co(II), and Cu(II). Application to determination of mercury in certified reference material is reported. The most likely mechanism of reaction of borane complexes in chemical vapor generation is based on the direct action of hydrogen bound to boron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号