共查询到19条相似文献,搜索用时 109 毫秒
1.
直觉模糊C-均值聚类算法研究 总被引:2,自引:0,他引:2
鉴于直觉模糊集理论作为模糊理论的推广已得到广泛的应用,研究了将模糊C-均值聚类推广为直觉模糊C-均值聚类(IFCM)的途径和方法,分析了现有的几种IFCM算法,并提出了一种基于直觉模糊集的模糊C-均值聚类算法.该算法首先定义了直觉模糊集之间的距离;然后构造了聚类的目标函数;最后给出了聚类算法步骤.将算法用于目标识别,实验结果表明了算法的有效性. 相似文献
2.
新的混合模糊C-均值聚类算法 总被引:1,自引:1,他引:1
基于量子行为的粒子群算法(QPSO)是一种改进的粒子群优化算法.它使用的参数个数少,在解的收敛性和全局搜索能力上优于基本的粒子群算法(PSO).将QPSO算法与模糊C-均值(FCM)算法相结合提出一种新的混合模糊C-均值聚类算法(QPSO-FCM),新算法代替了FCM算法的基于梯度下降的迭代过程,在一定程度上克服了FCM算法易陷入局部极小的缺陷,降低了FCM算法的初值敏感度.实验结果表明,改进后的新算法与FCM算法和PSO与FCM结合算法相比,具有良好的收敛性,聚类效果也有较好的改善. 相似文献
3.
模糊 C 均值(FCM)聚类算法采取随机选取聚类中心的方法,这种方法使得 FCM 算法在局部范围内容易获得最优解,但在全局范围内效果较差,且 FCM 算法中聚类簇的个数一般需要人为设定.面对上述种种问题,文中将蚁群聚类算法和 FCM 聚类算法进行结合,获得了一种改进的 FCM 聚类算法.该算法在初步聚类中利用蚁群聚类产生聚类中心和簇的个数,将产生的聚类中心提供给 FCM 算法进行再次聚类.利用蚁群聚类的全局搜索和并行运算的优点避免了聚类易陷入局部最优解的缺陷.经过实验验证,该算法较一般 FCM 算法具有更好的性能. 相似文献
4.
模糊C均值(FCM)聚类算法采取随机选取聚类中心的方法,这种方法使得FCM算法在局部范围内容易获得最优解,但在全局范围内效果较差,且FCM算法中聚类簇的个数一般需要人为设定。面对上述种种问题,文中将蚁群聚类算法和FCM聚类算法进行结合,获得了一种改进的FCM聚类算法。该算法在初步聚类中利用蚁群聚类产生聚类中心和簇的个数,将产生的聚类中心提供给FCM算法进行再次聚类。利用蚁群聚类的全局搜索和并行运算的优点避免了聚类易陷入局部最优解的缺陷。经过实验验证,该算法较一般FCM算法具有更好的性能。 相似文献
5.
6.
传统的模糊C-均值聚类算法未利用图像的空间信息,在分割迭加了噪声的MR图像时分割精度较差。采用了既能有效去除噪声又能较好地保持图像边缘特征的非局部降噪方法,结合基于图像灰度直方图聚类分析的快速模糊C-均值聚类算法,得到了一种具有较高分割精度的图像快速分割算法。通过对模拟图像、仿真脑部MR图像和临床脑部MR图像的分割实验,表明提出的新算法比已有的快速模糊C-均值聚类算法有更精确的图像分割能力。 相似文献
7.
为解决模糊C-均值(FCM)聚类算法对噪声和孤立点数据敏感、样本分布不均衡的问题,提出了具体的改进和提高的方法:改进隶属度函数,以消除孤立点对聚类结果的影响;为每个样本点赋予一个定量的权值,以区分不同的样本点对于知识发现的不同作用,改善噪音和分布不均衡的样本集的聚类结果。实验结果表明该算法具有更好的健壮性和聚类效果。 相似文献
8.
为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索性、并行计算性等特点避免聚类陷入局部最优解。实验证明该算法保证了种群的多样性,有较好的全局收敛性,克服了模糊C-均值聚类算法的不足,能有效解决未成熟收敛的问题,使聚类问题最终快速、有效地收敛到全局最优解。 相似文献
9.
10.
针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本点的密度来确定初始聚类中心,避免了初始聚类中心随机选取而产生的聚类结果的不稳定;采用马氏距离计算样本集的相似度,以满足不同度量单位数据的要求。实验结果表明,FCMBMD算法在聚类中心、收敛速度、迭代次数以及准确率等方面具有良好的效果。 相似文献
11.
基于模糊C均值(FCM)聚类算法,并利用遗传算法全局随机搜索的特点,提出了一种图像分割的改进遗传算法。该算法首先采用一种初值化算法确定合适的遗传算法的初始搜索范围,然后对遗传算法中的编码方式、交叉算子、变异算子等参数进行了一些适当改进,进而给出了该算法的理论推导和算法的具体实现步骤。该算法除了解决模糊C均值聚类算法在医学图像分割中容易陷入局部最优解的问题,而且采用的初值化算法比标准的遗传模糊C均值聚类算法能确定更合适的遗传算法的初始搜索范围,从而加速了遗传算法的收敛过程。实验表明,该方法相对于标准的遗传模糊C均值聚类算法,效果要好得多。 相似文献
12.
针对局部空间信息的模糊C-均值算法(WFLICM)中空间影响因子容易受到噪声影响出现错误标识的问题,提出一种融合局部和非局部空间信息的模糊C-均值聚类图像分割算法(NLWFLICM),在WFLICM算法的模糊影响因子中引入非局部空间信息,根据噪声程度自适应地设置局部和非局部信息权重,并重新标记中心点的模糊影响因子。实验结果表明,NLWFLICM算法具有比WFLICM算法更强的鲁棒性和自适应性,并在一定程度上提高了WFLICM算法对含有大量噪声图像进行分割的鲁棒性,同时保留了图像的纹理。为了提高算法的聚类性能和收敛速度,结合Canopy算法能够快速对数据进行粗聚类的优点,提出基于Canopy聚类与非局部空间信息的FCM图像分割改进算法(Canopy-NLWFLICM),可以在NLWFLICM算法聚类前,对聚类中心进行预处理,从而提高收敛速度和图像分割精度。 相似文献
13.
模糊聚类算法为了保证算法的收敛性,要求模糊指标m取值大于1,这限制了算法的普适性。提出广义多变量模糊C均值聚类算法(GMFCM),在多变量模糊C均值聚类算法(MFCM)的基础上,利用粒子群优化算法对分量模糊隶属度进行优化估计,进而将模糊指标拓展到m>0的情况,同时采用梯度法得到算法聚类中心迭代公式。GMFCM理论分析了模糊指标m扩展的原理,研究了模糊指标m在不同取值情况下的性质,解释了模糊指标m的实际意义,讨论了GMFCM算法的收敛性。GMFCM继承了MFCM算法的样本分量区分性能,弥补了MFCM算法聚类中心分量与样本分量重合时的不完备性,突破了模糊聚类算法对参数m的约束,提高了模糊聚类算法的普适性。基于gauss数据集和UCI数据集的仿真测试验证了所提算法的有效性。 相似文献
14.
基于空间邻域加权的模糊C-均值聚类及其应用研究* 总被引:2,自引:0,他引:2
针对模糊C-均值聚类法用于图像聚类时仅利用了像素的灰度信息,而忽视空间位置信息,导致在噪声区域和边界处有误分类现象,提出一种新的基于空间邻域加权的模糊C-均值图像聚类法。首先,定义了一个空间邻域信息函数,该函数能够有力抑制噪声点,同时能够很好保留边界的特性;其次,设计了具有空间约束的样本邻域信息加权隶属度矩阵;最后,将该方法应用于人工合成图像和模拟MR脑图像的聚类。实验结果表明,该方法能够获得较好的聚类效果,同时具有较强的抑制噪声的能力。 相似文献
15.
基于遗传FCM算法的文本聚类 总被引:3,自引:1,他引:3
本文提出基于遗传FCM算法的文本聚类方法,首先采用LSI方法对文本特征进行降维,然后通过聚类有效性分析得到文本的类别数,最后再采用遗传FCM算法对文本进行聚类,这种方法较好的克服了FCM算法收敛于局部最优的缺陷,很好的解决了FCM算法对初值敏感的问题。实验表明提出的方法具有较好的聚类性能。 相似文献
16.
把自适应的策略与传统的模糊C均值聚类算法结合起来,形成新的模糊聚类算法。在不影响收敛速度的情况下,它能够很好解决局部最优以及对初始值敏感的问题。以UCI机器学习数据库中的两组数据集为研究对象,实验结果表明,它的精确度与自适应免疫聚类算法相当,能够得到准确的簇的数目,并且它的收敛速度更快,这对于如今网络数据的高速变化来说,该方法显得更为重要。 相似文献
17.
基于混合核函数的可能性C-均值聚类算法 总被引:1,自引:0,他引:1
针对传统的模糊C-均值算法对于非球形分布的数据聚类效果不理想且易受到噪声数据的影响,利用可能性C-均值算法具有良好的抗噪声性能,将混合核函数引入到该算法中,提出了一种基于混合核函数的可能性C-均值(HKPCM)聚类算法。该算法将原空间的待分类样本映射到一个高维的特征空间(核空间)中,使得样本变得线性可分,然后在核空间中进行聚类。实验结果证实了HKPCM算法的可行性和有效性。 相似文献
18.
FCM算法作为基于目标函数的模糊聚类算法中最经典的算法之一,在实际应用中得到了深入的研究,但FCM算法需要人为给定分类数C,因此破坏了聚类的无监督性。针对FCM算法的不足,提出了利用密度指标确定初始聚类数目上限Cmax,并且对有效性指标进行了改进,计算对于(1,Cmax]中的每一个c对应的有效性函数值,根据有效性评判,确定最佳聚类数,实现了自动得到最佳分类数的算法。 相似文献
19.
针对无线传感器网络(WSN)的节点能量有限、生命周期短、吞吐量低等问题,提出一种基于遗传算法(GA)和模糊C均值(FCM)聚类的WSN分簇路由算法GAFCMCR,采取"集中分簇,分布簇头选举"的方式。网络初始化时基站采用由GA优化的FCM聚类算法形成网络分簇。第一轮簇头由距簇中心最近的节点担任;从第二轮开始,簇头的选举由上一轮的簇头负责,选举过程综合考虑候选节点的剩余能量、与基站的距离、与簇内其他节点的平均距离三个因子,并根据网络状态实时调整三个因子的权重。在数据传输阶段,将轮询机制引入簇内通信。仿真结果表明,相同网络环境下,与LEACH算法和基于K-Means的均匀分簇路由(KUCR)算法相比,GAFCMCR将网络生命周期延长了105%和20%。GAFCMCR成簇效果良好,具有良好的能量均衡性和更高的吞吐量。 相似文献