首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper–graphite composite is a tribological composite that can be used in sliding electrical contact applications requiring low friction and wear in addition to high electrical conductivity. The graphite powder (5 wt%) was mixed with the copper powder, and then composite was fabricated through powder metallurgy (P/M) route. P/M product generally requires secondary operations such as rolling, extrusion, etc. to improve their mechanical properties. Post-heat-treatment technique is also applicable to improve the properties of P/M components. Microwave-post-heat-treatment research studies are gaining momentum nowadays due to the improved quality of products with reduced time, energy, and associated cost. Microwave post-heat treatment of copper–graphite composites for different heat treating duration was carried out in a hybrid microwave heating setup. Microstructural studies were carried out using SEM with EDAX. Microwave-heat-treated samples exhibited reduced porosity, improved density, and hardness. In order to understand the friction and wear properties of microwave-heat-treated copper–graphite composites, pin-on-disk wear experiments were conducted. For comparison, untreated copper–graphite composites were also subjected to similar studies. Microwave-heat-treated samples exhibited reduced coefficient of friction and specific wear rate when compared to the untreated ones. The wear mechanism of untreated composites was observed to be plastic deformation characterized by large wear fragments, whereas the mechanism of heat-treated composite was delamination observed through peel off tribolayer.  相似文献   

2.
要模式识别与时间序列分析理论基础上,针对粉末冶金压制过程开发出模具装粉状态自动监测系统,为保证粉末冶金生产的优质高效进行,提供了一条新的途径。  相似文献   

3.
A surface modification method by electrical discharge machining (EDM) with a green compact electrode has been studied to make thick TiC or WC layer. Titanium alloy powder or tungsten powder is supplied from the green compact electrode and adheres on a workpiece by the heat caused by discharge. To avoid the production process of the green compact electrode, a surface modification method by EDM with powder suspended in working fluid is proposed in this paper. After considering flow of working fluid in EDM process, the use of a thin electrode and a rotating disk electrode are expected to keep powder concentration high in the gap between a workpiece and an electrode and to accrete powder material on the workpiece. The accretion machining is tried under various electrical conditions. Titanium powder is suspended in working oil like kerosene. TiC layer grows a thickness of 150 μm with a hardness of 1600 Hv on carbon steel with an electrode of 1 mm in diameter. When a disk placed near a plate rotates in viscous fluid, the disk drags the fluid into the gap between the disk and the plate. Therefore, the powder concentration in the gap between a workpiece and a rotational disk electrode can be kept high. A wider area of the accretion can be obtained by using the rotational electrode with a gear shape.  相似文献   

4.
粉末冶金生产过程中,产品质量的实时监控是实现高效率、自动化生产的必要途径之一。本文在模式识别与时间序列分析理论基础上,针对粉末冶金压制过程开发出生坯密度自动监测系统,为粉末冶金生产的自动监控提供了一条新的途径。  相似文献   

5.
粉末压制是粉末冶金工艺关键步骤,压制压力直接影响着粉末冶金压坯的密度,提高压坯密度有助于提高粉末冶金制品的各项力学性能和物理性能。随着压制压力的提高,压坯密度呈现先急增后缓增的趋势,因此压制压力的大小严重影响着粉末冶金制品的性能。然而当压制压力不能使粉末冶金摩擦材料制品达到所需的压坯密度时,增加压制次数也能够在一定程度上提高压坯密度,一般情况下铜粉的屈服强度为200MPa左右,而一般铜基粉末冶金摩擦材料制品所需要的压制压力为600~800MPa,当使用低压压制时为了达到所需的压坯密度、硬度及各项物理性能,可适当增加压制次数,从而同样能达到改善压坯物理性能的目的。  相似文献   

6.
研究了Fe-Mo-B预合金粉的含量对温压铁基材料烧结硬化后试样的密度、尺寸精度、表观硬度和抗拉强度以及显微组织的影响。结果表明:混合粉中加入一定量的Fe-Mo-B预合金粉,利用温压工艺压制成形后烧结硬化,可有效提高试样的力学性能并可获得典型贝氏体组织。烧结试样密度最高为7.49g/cm^3,其相对密度为97.74%;表观硬度最高可达44HRC,抗拉强度为1434MPa。  相似文献   

7.
通过对电除尘器输灰系统改造将除尘灰外排后,保证了台车箅条的良好通风间隙,提高烧结利用系数,有利于机头静电除尘器的除尘效果。  相似文献   

8.
The demand for powder metallurgy (P/M) parts in its traditional automotive market is predicted to grow, but future sector expansion depends directly upon its capability to manufacture zero-defect parts for industries such as aerospace and medicine. The lack of adequate inspection systems has important implications from the point of view of quality assurance, since it increases the costs, time and wasted material. In recent years the applicability of several techniques for the inspection of P/M parts has been investigated, such as Eddy current testing, computer tomography or X-ray imaging, but studies have revealed that all of them have deficiencies that make them unavailable for a complete and reliable flaw detection and density defect recognition. A new inspection tool has been developed based on pulse echo ultrasonic technology combined with robotics, which makes it possible to provide a global density map of sintered.  相似文献   

9.
Electrical discharge machining (EDM) is a non-conventional machining technique for removing material based on the thermal impact of a series of repetitive sparks occurring between the tool and workpiece in the presence of dielectric fluid. Since the machining characteristics are highly dependent on the dielectric’s performance, significant attention has been directed to modifying the hydrocarbon oil properties or introducing alternative dielectrics to achieve higher productivity. This article provides a review of dielectric modifications through adding powder to dielectric. Utilizing powder mixed dielectric in the process is called powder mixed EDM (PMEDM). In order to select an appropriate host dielectric for enhancing machining characteristics by adding powder, a brief background is initially provided on the performance of pure dielectrics and their selection criteria for PMEDM application follow by powder mixed dielectric thoroughly review. Research shows that PMEDM facilitates producing parts with predominantly high surface quality. Additionally, some studies indicate that appropriate powder selection increases machining efficiency in terms of material removal rate. Therefore, the role of powder addition in the discharge characteristics and its influence on machining output parameters are explained in detail. Furthermore, by considering the influence of the main thermo-physical properties and concentration of powder particles, the performance of various powder materials is discussed extensively. Since suitable powder selection depends on many factors, such as variations in EDM, machining scale and electrical and non-electrical parameter settings, a thorough comparative review of powder materials is presented to facilitate a deeper insight into powder selection parameters for future studies. Finally, PMEDM research trends, findings, gaps and industrialization difficulties are discussed extensively.  相似文献   

10.
This study investigates an effective method for manufacturing electrical discharge machining (EDM) electrodes using the rapid prototyping (RP) system based on electroless plating (nickel plating) and electroforming (copper). This method was shown to finish the development of die-sinking electrical discharge machining (EDM) electrodes, shorten the electrode manufacturing process, decrease the manufacturing duration as well as the cost of electrodes. The electrode prototype was drawn with Pro/E 3D CAD, and the CAD model was then transformed into the stereo lithography (STL) file format. A Zcorp 402 3DP rapid prototyping machine was adopted to make a gypsum powder electrode prototype with a complex appearance. The gypsum material is sealed by resin permeation, enhancing its water-resistance and strength. Electroless plating was then performed to introduce electric conductivity onto the gypsum electrode surface, followed by copper electroforming of the thickness about 1 mm to obtain the EDM electrode. Furthermore, die-sinking electric discharge machining was performed. Test results indicate that no crack was found on the electrode and that the electrical discharge machining effects are promising.  相似文献   

11.
针对目前线切割机对加工区进行冷却过程中,金属粉末易进入上导轮总成和下导轮总成的轴承中,致使轴承很快磨损报废的问题,设计了一种能防止切削液将金属粉末带入轴承的气压密封装置,从而可使轴承的使用寿命延长4~5倍。  相似文献   

12.
The present study investigates the relationship of process parameters in electro-discharge of CK45 steel with novel tool electrode material such as Al–Cu–Si–TiC composite produced using powder metallurgy (P/M) technique. The central composite second-order rotatable design had been utilized to plan the experiments, and response surface methodology (RSM) was employed for developing experimental models. Analysis on machining characteristics of electrical discharge machining (EDM) die sinking was made based on the developed models. In this study, titanium carbide percent (TiC%), peak current, dielectric flushing pressure, and pulse on-time are considered as input process parameters. The process performances such as material removal rate (MRR) and tool wear rate (TWR) were evaluated. Analysis of variance test had also been carried out to check the adequacy of the developed regression models. Al–Cu–Si–TiC P/M electrodes are found to be more sensitive to peak current and pulse on-time than conventional electrodes. The observed optimal process parameter settings based on composite desirability are TiC percent of 18%, peak current of 6 A, flushing pressure of 1.2 MPa, and pulse on-time of 182 μs for achieving maximum MRR and minimum TWR; finally, the results were experimentally verified. A good agreement is observed between the results based on the RSM model and the actual experimental observations. The error between experimental and predicted values at the optimal combination of parameter settings for MRR and TWR lie within 7.2% and 4.74%, respectively.  相似文献   

13.
温压致密化机理及其在温压粉末设计中的应用   总被引:5,自引:0,他引:5  
温压是以较低的成本制造高性能铁基粉末冶金零部件的新型成形技术。试验结果表明,颗粒重排是温压过程的主导致密化机理,而为颗粒重排提供协调性的塑性变形是另一重要的致密化机理,同时还分析了影响这两个致密化机理的主要因素。在此基础上,提出了温压粉末原料的设计原则,并成功地开发了高性能、低成本、合金钢粉末三大体系的温压粉末原料。  相似文献   

14.
Non-conducting powder samples usually are mixed with a conducting host-matrix before glow discharge mass spectrometry (GD-MS) determination. Infiltration technique under high pressure was applied on GeO2 sample preparation of GD-MS. Appropriate parameters of mixing procedure are discussed. This method ensures good homogeneity, relative low contamination and satisfying precision. Analytical results indicate that infiltration technique is suitable for the production of oxide samples.  相似文献   

15.
This paper describes the influence of the discharge current and the pulse duration on the titanium carbide (TiC) deposition process by electrical discharge machining (EDM) with titanium (Ti) powder suspended in working oil. Although the influence of the electrical conditions for removal EDM has been investigated, the criteria for deposition have not been discussed. In the experiments, a 1-mm copper rod was used for an electrode to prevent the flushing of working oil from the gap between the electrode and a workpiece. Ti powder reacted with the cracked carbon from the working oil, then depositing a TiC layer on a workpiece surface. A major criterion of the deposition or removal was the discharge energy over a pulse duration of 10 μs. A thickness of the TiC layer became the maximum at a certain discharge current and pulse duration. Larger discharge energy and power promoted the removal by heat and pressure caused by the discharge. The removal was classified further into two patterns; cracks were observed on the Ti-rich surface in removal pattern 1 and a workpiece was simply removed in removal pattern 2. The maximum hardness of the deposition was 2000 Hv. The workpiece about 10 μm beneath its surface was also hardened because of the dispersion of TiC. The machining conditions for the hardest deposition did not coincide with those for the highest one. Therefore, the discharge current and pulse duration should be optimized for the deposition.  相似文献   

16.
混粉电火花加工中极性效应的研究   总被引:2,自引:0,他引:2  
为研究极性效应对混粉电火花加工的影响规律.采用钢对钢加工、铜对钢加工两种电极组合在添加硅粉的煤油工作液及普通煤油工作液中进行实验,并更换不同的极性,考察了两极材料的去除率和表面粗糙度,结果表明负极总能得到更高的材料去除率,而正极总能得到更低的表面粗糙度值。此现象可从两极表面能量密度差异的角度予以解释。  相似文献   

17.
In this article, a material removal rate (MRR) and electrode wear ratio (EWR) study on the powder mixed electrical discharge machining (PMEDM) of cobalt-bonded tungsten carbide (WC-Co) has been carried out. This type of cemented tungsten carbide was widely used as moulding material of metal forming, forging, squeeze casting, and high pressure die casting. In the PMEDM process, the aluminum powder particle suspended in the dielectric fluid disperses and makes the discharging energy dispersion uniform; it displays multiple discharging effects within a single input pulse. This study was made only for the finishing stages and has been carried out taking into account the four processing parameters: discharge current, pulse on time, grain size, and concentration of aluminum powder particle for the machinability evaluation of MRR and EWR. The response surface methodology (RSM) has been used to plan and analyze the experiments. The experimental plan adopts the face-centered central composite design (CCD). This study highlights the development of mathematical models for investigating the influence of processing parameters on performance characteristics.  相似文献   

18.
Mathematical modeling of sintering during powder forming processes   总被引:1,自引:0,他引:1  
This paper describes a study of densification induced by local capillary forces during compaction of powder based materials. A coupled sinter-compaction model with an internal state parameter was proposed. An internal state parameter was assumed as the sintering stresses on contact areas between powder particles. The mechanical model describing the plastic deformation during the P/M forging of a preform is based on the plasticity theory of porous metals. The numerical investigation of P/M forming processes is based on the rigid-plastic finite element model. A finite element program taking into account the sintering effect during P/M forming is created. A numerical example is considered.  相似文献   

19.
利用超级电容的功率密度高及可大电流充放电等特点,提出并设计了锂电池与超级电容双能源电电混合动力系统,建立了基于交流电力测功机的混合动力系统在环综合测试台架。采用70.4V/40A·h的磷酸铁锂电池组与48.6V/165F超级电容模组进行混合,并设计了基于综合测试台架的后向工况测试流程。最后采用UDDS动态工况,完成对基于模糊PID控制的双能源能量管理策略系统的在环测试。测试结果表明,通过混合结构及能量管理策略,锂电池组的充放电电流均限制在1C范围内,超级电容承担大部分电流波动,保护了锂电池组。  相似文献   

20.
氧化锆零件激光选区烧结/冷等静压复合成形技术   总被引:2,自引:0,他引:2  
氧化锆陶瓷材料以其优异的性能在工业生产中具有极大的应用前景,但由于脆性大、硬度高等原因,复杂形状氧化锆零件往往难以成形和加工。为了获得复杂形状氧化锆陶瓷零件,通过溶剂沉淀法将粘接剂尼龙12覆膜至纳米氧化锆粉末的表面,然后对覆膜后的粉体进行激光选区烧结(Selective laser sintering, SLS)成形,并通过传统的冷等静压(Cold isostatic pressing, CIP)技术对SLS零件进行致密化处理,同时满足氧化锆初坯成形时形状复杂度和密度的要求。通过试验得出在激光能量密度为0.415 J/mm2时,获得的SLS陶瓷件密度较大,对不同激光能量密度制备的SLS陶瓷件进行保压压力为200 MPa的冷等静压致密化处理,根据热脱脂机理以及粘接剂的TG曲线,分别制定了SLS/CIP试样的热脱脂工艺,最后对脱脂试样进行高温烧结,在后续处理的各环节,氧化锆零件的密度仍受SLS成形的影响,但该影响逐渐减弱,SLS/CIP/FS成形件最大相对密度和维氏硬度分别达到了97%和1180 HV1,已接近“模压-烧结”的致密氧化锆陶瓷的性能,在试样断口的扫描电子显微镜(SEM)分析基础上,对氧化锆复合成形的微观演变进行了研究。虽然最终烧结件密度和硬度仍有待提高,但是提出了一种极具潜力的氧化锆零件近净成形工艺方法,为制造高性能复杂形状的陶瓷零件奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号