首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
天线的远场对于研究天线辐射特性具有重大意义,近场测量技术因其能够避免直接测量远场而得到广泛应用,该技术采用近远场变换获得远场,然而,检验该远场的准确性也是很重要的.为了解决此类问题,文中以球面近场测量为例,提供了一种解决方案.该方案主要探讨了球面波模式展开理论,该理论是实现球面近远场变换算法的关键,其将待测天线在空间建立的场展开成球面波函数之和,天线的加权系数既包含了远场信息也包含了近场信息.因此,不仅能够利用近场测量信息获得远场辐射特性,同样能够利用远场辐射特性反推得到近场处电场,这样就能检验由近远场变换算法得到的远场是否准确.文中首先推算得到了近远场变换公式,随后进一步推算得到远近场变换的公式,最后将本文算法计算结果与FEKO测量结果进行比较,二者吻合良好,从而证实了本文两种算法的有效性.  相似文献   

2.
天线的远场对于研究天线辐射特性具有重大意义,由于远场的直接测量有着诸多限制,近场测量技术计算远场因其简洁准确的特点得到广泛应用. 然而,传统的近场测量技术要求获取近场区的幅度和相位分布才能发挥作用,随着天线频率的升高,人们想要在近场区获取准确的相位信息变得十分困难. 为了解决该技术难题,文中提出一种无相位近场测量技术. 利用一个封闭面上的幅度信息重建或猜测出包围待测天线的球面切向电场分布,并采用遗传算法进行全局优化,其最初为四组随机数据,经过数次优化后将逐渐接近准确结果. 仿真结果表明,本文方法能够在忽略相位信号的前提下,计算出准确的远场辐射特性.  相似文献   

3.
The spherical near-field geometrical theory of diffraction (SNFGTD) method is an extended aperture method by which the near field from an antenna is computed on a spherical surface enclosing the antenna using the geometrical theory of diffraction. The far field is subsequently found by means of a spherical near-field to far-field transformation based on a spherical wave expansion of the near field. Due to the properties of the SNF-transformation, the total far field may be obtained as a sum of transformed contributions which facilitates analysis of collimated beams. It is demonstrated that the method possesses some advantages Over traditional methods of pattern prediction, but also that the accuracy of the method is determined by the quasioptical methods used to calculate the near field.  相似文献   

4.
基于球模式展开理论的近远场变换是天线球面近场测量系统实现的关键,它将待测天线在空间建立的场展开成球面波函数之和,由于其计算公式复杂,因而计算耗费时间长。该文在实际计算中利用快速傅里叶变换及矩阵的思想可以大幅度提高程序运行速度,节省计算时间。采用该方法对角锥喇叭天线的近远场数据进行仿真验证,结果表明外推远场的结果和理论值吻合良好,说明了该方法在保证计算精度的同时,可缩短计算时间。  相似文献   

5.
Near-field antenna measurements combined with a near-field far-field transformation are an established antenna characterization technique. The approach avoids far-field measurements and offers a wide area of post-processing possibilities including radiation pattern determination and diagnostic methods. In this paper, a near-field far-field transformation algorithm employing plane wave expansion is presented and applied to the case of spherical near-field measurements. Compared to existing algorithms, this approach exploits the benefits of diagonalized translation operators, known from fast multipole methods. Due to the plane wave based field representation, a probe correction, using directly the probe's far-field pattern can easily be integrated into the transformation. Hence, it is possible to perform a full probe correction for arbitrary field probes with almost no additional effort. In contrast to other plane wave techniques, like holographic projections, which are suitable for highly directive antennas, the presented approach is applicable for arbitrary radiating structures. Major advantages are low computational effort with respect to the coupling matrix elements owing to the use of diagonalized translation operators and the efficient correction of arbitrary field probes. Also, irregular measurement grids can be handled with little additional effort.  相似文献   

6.
Microwave diagnosis of antennas is considered as a viable tool for the determination of reflector surface distortions and location of defective radiating elements of array antennas. A hybrid technique based on the combination of the spherical near-field measurements and holographic metrology reconstruction is presented. The measured spherical near-field data are first used to construct the far-field amplitude and phase patterns of the antenna on specified regularized u-v coordinates. These data are then utilized in the surface profile reconstruction of the holographic technique using a fast-Fourier-transform (FFT)/iterative approach. Results of an experiment using a 156-cm reflector antenna measured at 11.3 GHz are presented for both the original antenna and the antenna with four attached bumps. Several contour and gray-scaled plots are presented for the reconstructed surface profiles of the measured antennas. The recovery effectiveness of the attached bumps has been demonstrated. The hybrid procedure presented is used to assess the achieved accuracy of the holographic reconstruction technique because of its ability to determine very accurate far-field amplitude and phase data from the spherical near-field measurements  相似文献   

7.
In the near field of the Arecibo spherical antenna radar system, i.e., at ranges less than about 260 km, the gain is a function of range and a knowledge of gain is necessary for deducing electron-density information from the power backscattered from the ionosphere. A method of obtaining the phase taper across the aperture (and hence the near-field on-axis and backscatter gains versus range), given a knowledge of the far-field on-axis gain versus frequency, and the amplitude of the illumination over the aperture is suggested. Our studies show that measurements of on-axis far-field gain over a bandwidth ofpm7MHz are adequate to give an accurate indication of on-axis gain versus range in the near field, while apm15MHz frequency spread is needed to give accurate information on the backscatter gain versus range. The near-field correction for the antenna has also been estimated from measurements made on a model of the new line feed. Confidence in the validity of this approach has been obtained by comparing the measured far-field on-axis gain versus frequency with that calculated using the data from the model feed.  相似文献   

8.
The near-field and the far-field patterns from the high-gain S band antenna an the METEOSAT are calculated by the geometrical theory of diffraction. The far field is transformed into the near field through an expansion in spherical harmonics. The resulting transformed field agrees well with the g.t.d. near field.  相似文献   

9.
This work presents a near-field to far-field (NF-FF) transformation for antenna and scatterer radiation evaluation. The transformation allows practical computation by making use of a sampling surface in the near-field that is spheroidal in shape: namely a prolate or oblate spheroid. The resulting vector wave equation does not support orthogonal vector solutions in spheroidal coordinates and instead rectangular field components are solved for using the scalar wave equation in spheroidal coordinates. The new transformation only requires knowledge of the completely-specified near-field electric field along the spheroidal transformation surface and does not need any information associated with the corresponding magnetic field. The benefit of using a spheroidal near-field geometry is its ability to closely conform to both linear and planar radiating structures while still permitting evaluation of the full far-field radiation pattern. Our approach makes use of an eigenfunction expansion of spheroidal wave-harmonics to develop two distinct, yet closely related, NF-FF transformation algorithms for each type of spheroidal surface. The spheroidal NF-FF transformation is validated and performance assessed using a well-characterized radiation structure. By applying the prolate and oblate algorithms to a radiating structure with known analytical near- and far-field electric fields, viz., a filament dipole with sinusoidal current distribution, we are able to setup and conduct multiple numerical tests that serve as a proof-of-concept for the spheroidal NF-FF transformation.  相似文献   

10.
For the last 18 years, our group has been developing a variety of near-field-to-far-field transformations (NFFFTs) for predicting the far-field (FF) RCS of targets from monostatic near-field (NF) measurements. The most practical and mature of these is based on the reflectivity approximation, commonly used in ISAR imaging to model the target scattering. This image-based NFFFT is also the most computationally efficient because - despite its theoretical underpinnings - it does not explicitly require image formation as part of its implementation. This paper presents a formulation and implementation of the image-based NFFFT that is applicable to two-dimensional (2D) spherical and one-dimensional (1D) circular near-field measurement geometries, along with numerical and experimental examples of its performance. We show that the algorithm's far-field RCS pattern-prediction performance is quite good for a variety of frequencies, near-field measurement distances, and target geometries. In addition, we show that the predicted RCS statistics remain quite accurate under conditions where the predicted far-field patterns have significantly degraded due to multiple interactions and other effect.  相似文献   

11.
针对6G超大规模多输入多输出(Extremely Large-scale Multiple-Input Multiple-Output,XL-MIMO)系统信道特性变化造成现有的近场和远场信道估计方案不能准确估计XL-MIMO混合场信道的问题,同时考虑到实际系统中稀疏度难以获取,提出了一种基于分段弱正交匹配追踪的混合场信道估计(Hybrid-field Stagewise Weak Orthogonal Matching Pursuit,HF-SWOMP)算法。该算法利用XL-MIMO混合场中近场和远场区域不同的信道特性,分别对近场和远场信道分量进行估计,从而得到混合场信道。仿真结果表明,所提XL-MIMO混合场信道估计算法性能相对于仅考虑近场和远场信道估计方案分别提高了约3.5 dB和3 dB,更符合实际信道场景。  相似文献   

12.
In high frequency thercs measurement of large target must be done at important distances, so the distance of measurement (Fraunhofer’s distance) R is given by R ≥ 2d2 /λ where d is the tranversal length of the target and λ the radiation wavelength. In this paper we present a method for target that are large relative to the curvature of the spherical wavefront and the curvature of the cylindrical wavefront. A two-dimensional analytical algorithm transforms the spherical wave (near-field) measurement into the desired plane wave (far-field) and a one-dimensionnal analytical algorithm transforms the cylindrical wave (near-field) measurement into the desired plane wave (far-field). We present some results on simulations and measurements. A comparison of one-dimensional and two-dimensional methods demonstrates the efficiency of the two dimensional methods.  相似文献   

13.
Results of an experimental study are presented in which the near-field probe was used as a diagnostic tool to locate the defective elements in a planar array. The near-field data were processed not only to obtain the far-field patterns of the array under the test, but also to reconstruct the aperture field for diagnostic purposes. The backward transform enables the near-field probe to identify accurately aperture faults at a distance, free of interactions and couplings with the array elements. In practice, to recover the aperture field properly from the near-field distribution, the evanescent components in the computed far-field spectrum must be excluded from the inverse process with fast-Fourier-transform (FFT) techniques. For low-gain array antennas, a correction on the far-field spectrum is required to remove the contribution of the probe and the element factor before the inverse transform, strongly enhancing the resolution  相似文献   

14.
对近远场变换技术在目标特性测试中的应用进行了研究,通过对飞机模型的仿真结果进行近场成像处理、远场计算重构以及卷积积分修正等处理,可将近场散射变换到远场.同时,近远场变换技术能够有效解决在不满足远场条件下测量雷达散射截面积(RCS)时遇到的问题.通过对金属导体圆柱、导弹模型、常规飞机模型、角反射器等进行RCS测试,并对单...  相似文献   

15.
Test zone field (TZF) compensation increases antenna pattern measurement accuracy by compensating for extraneous fields created by reflection and scattering of the range antenna field from fixed objects in the range and by leakage of the range RF system from a fixed location in the range. TZF compensation can be used on fixed line-of-sight (static) far-field, compact, and near-field ranges. Other compensation techniques are seldom used in practical measurement situations because they are limited in the amount of compensation they provide. These techniques do not adequately model the type of extraneous field present in the range or require increased measurement time and equipment necessary to implement the technique. TZF compensation overcomes these limits as follows. The TZF is measured over a spherical surface encompassing the test zone using a low gain probe. The measured TZF is used antenna pattern measurements to compensate for extraneous fields. TZF compensation theory is presented and demonstrated using measured data  相似文献   

16.
A recently presented fully probe-corrected near-field far-field transformation employing plane wave expansion and diagonal translation operators enables near-field far-field transformation for arbitrary measurement contours and arbitrary antennas. A multilevel extension, inspired by the multilevel fast multipole method, is presented that is suitable for the efficient transformation of electrically large antennas with a size of tens or even hundreds of wavelengths. The measurement points are grouped in a multilevel fashion and translations are carried out to the box centers on the highest level only. The plane waves are processed through the different levels to the measurement points using a disaggregation and anterpolation procedure resulting in a reduced overall complexity. In the second part of this paper, the influence of perfectly conducting ground planes and dielectric halfspaces, as an approximation for ground effects in a real measurement setup, is investigated. As such ground reflected waves are assumed, which propagate from the investigated antenna to the field probe and add to the direct wave contributions. The far-field conditions required for these assumptions are achieved by a source box grouping scheme. By this extension ground effects are directly considered within the near-field far-field transformation. Transformation results using simulated and measured near-field data are shown.   相似文献   

17.
Physical optics is used to assess the scattering of plane and spherical electromagnetic wave by a target in free space. In both cases the field radiated by the target is calculated in a 2D space, as a function of the frequency and the angle of observation of the target. The sampling criteria permitting inverse processing methods are complied with. Analysing series of synthesised impulse response (or range response), also called sinograms, allows to extract and compare contributors of the target radar cross-section (rcs) under near-field and far-field conditions.  相似文献   

18.
In a recent paper (see ibid., vol.42, p473-7, April 1994), the authors presented the development of an algorithm for the reconstruction of element currents of a spherical loop array given the far-field pattern data in an azimuthal plane, and demonstrated the validity of the method with several computational examples. In this letter, it is shown that the same algorithm can be applied to the reconstruction of the spherical loop-array currents from the near-field data by application of spherical wave expansion of the electric field integral of the array. The main feature of the reconstruction algorithm is that the array currents are obtained recursively through the solution of a triangular equation set  相似文献   

19.
The main plane far-field radiation pattern of an antenna under test from the corresponding main plane near-field data, using a circular-line acquisition, is presented. The method is based on the reconstruction of equivalent magnetic currents (EMCs) using decoupled integral equations and one-dimensional source components. The resultant fast procedure is applicable to linear and quasilinear array antennas. Experimental data results and comparison with complete spherical acquisition and center-line acquisition are presented  相似文献   

20.
For part 1 see ibid. vol.47, no.9, p.1280 (1994). Two computation schemes for calculating the far-field pattern in the time domain from sampled near-field data are developed and applied. The sampled near-field data consists of the values of the field on the scan plane measured at discrete times and at discrete points on the scan plane. The first computation scheme is based on a frequency-domain near-field to far-field formula and applies frequency-domain sampling theorems to the computed frequency-domain near field. The second computation scheme is based on a time-domain near-field to far-field formula and computes the time-domain far field directly from the time-domain near field. A time-domain sampling theorem is derived to determine the spacing between sample points on the scan plane. The computer time for each of the two schemes is determined and numerical examples illustrate the use and the general properties of the schemes. For large antennas the frequency-domain computation scheme takes less time to compute the full far field than the time-domain computation scheme. However, the time-domain computation scheme is simpler, more direct, and easier to program. It is also found that planar time-domain near-field antenna measurements, unlike single-frequency near-field measurements, have the capability of eliminating the error caused by the finite scan plane, and thus can be applied to broadbeam antennas  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号