首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Halogen-free flame-retarded linear low density polyethylene (LLDPE) composites were prepared in a melt process using magnesium hydroxide (MH) as a flame retardant. The effects of surface modifiers on mechanical properties and rheological behavior of the filled LLDPE have been studied. The results show that the use of surface modifiers with low molecular weight (MW) such as stearic acid or its salts, and silane coupling agents can improve greatly the elongation at break of the composites, and decrease the tensile strength in most cases. However, PE- g -DBM (LLDPE grafted with dibutyl maleate) as a polymeric compatibilizer can make the strength and elongation at break of the composites increase simultaneously. It was found from the rheological measurements that the composites containing low MW surface modifiers exhibited a lower viscosity compared with that of the composites without them, whereas the use of PE- g -DBM compatibilizer increased the viscosity of the composites. In addition, their effects on the morphological structure of the flame-retarded LLDPE composites containing surface modifiers have been investigated using scanning electron microscope (SEM).  相似文献   

2.
Three series of nonionic surfactants derived from polytriethanolamine containing 8, 10, and 12 units of triethanolamine were synthesized. Structural assignment of the different compounds was made on the basis of FTIR and 1H‐NMR spectroscopic data. The surface parameters of these surfactants included critical micelle concentration (CMC), surface tension at the CMC (γCMC), surfactant concentration required to reduce the surface tension of the solvent by 20 mN m?1 (pC20), maximum surface excess (Γmax), and the interfacial area occupied by the surfactant molecules (Amin) using surface tension measurements. The micellization and adsorption free energies were calculated at 25 °C.  相似文献   

3.
In this work, a novel series of zwitterionic gemini surfactants with different hydrophobic tails were synthesized and characterized. The physico‐chemical properties of these products (such as surface tension, oil/water interfacial tension, foaming ability, and the wetting ability of paraffin‐coated sandstone) were fully studied. The CMC of the synthesized surfactants ranged from 2.17 × 10?4 mol L?1 to 5.36 × 10?4 mol L?1 and corresponding surface tension (γCMC) ranged from 26.49 mN m?1 to 29.06 mN m?1, which showed excellent efficiency among the comparison surfactants. All the products can reduce the interfacial tension to a relatively low level of about 0.1–1.0 mN m?1. Additionally, results from applying different hydrocarbons suggested that the synergy will be clearer and oil/water interfacial tension will be lower if the oil components are similar to the surfactants. Contact angle and foaming measurements indicated that the surfactants exhibited good wetting and foaming abilities. The results of oil flooding experiments using an authentic sandstone microscopic model showed that C‐12 and CA‐12 could effectively improve the displacement efficiency by 21–29 %.  相似文献   

4.
New pyridinium Gemini surfactants have been synthesized by esterification of renewable fatty acids with halogenated alcohols furnishing respective esters (2‐chloroethyl hexadecanoate, 2‐chloroethyl tetradecanoate, 2‐chloroethyl dodecanoate, 2‐bromoethyl hexadecanoate, 2‐bromoethyl tetradecanoate and 2‐bromoethyl dodecanoate) followed by their subsequent treatment with 4,4′‐trimethylenedipyridine resulting into the formation of title Gemini surfactants: (4,4′‐(propane‐1,3‐diyl)bis(1‐(2‐(hexadecanoyl oxy) ethyl) dipyridinium chloride(7), (4,4′‐(propane‐1,3‐diyl)bis(1‐(2‐(tetradecanoyl oxy) ethyl) dipyridinium chloride (8), 4,4′‐(propane‐1,3‐diyl)bis(1‐(2‐(dodecanoyl oxy) ethyl) dipyridinium chloride (9), (4,4′‐(propane‐1,3‐diyl)bis(1‐(2‐(hexadecanoyl oxy) ethyl) dipyridinium bromide (10), (4,4′‐(propane‐1,3‐diyl)bis(1‐(2‐(tetradecanoyl oxy) ethyl) dipyridinium bromide (11), 4,4′‐(propane‐1,3‐diyl)bis(1‐(2‐(dodecanoyl oxy) ethyl) dipyridinium bromide (12). Their identifications are based on IR, 1H‐, 13C‐NMR, DEPT, COSY and mass spectral studies. Their surface active properties are also evaluated on the basis of surface tension and conductivity measurements and thermal stability of these long chain cationics Gemini surfactants have been measured by thermal gravimetric analysis under nitrogen atmosphere.  相似文献   

5.
Experimental studies were conducted to investigate thermal and interfacial properties of two in‐house synthesized amido‐amine‐based cationic gemini surfactants namely: dodecanoic acid [3‐({4‐[(3‐dodecanoylamino‐propyl)‐dimethyl‐amino]‐butyl}‐dimethyl‐amino)‐propyl]‐amide dibromide ( 12‐4‐12 ) and dodecanoic acid [3‐({6‐[(3‐dodecanoylamino‐propyl)‐dimethyl‐amino]‐hexyl}‐dimethyl‐amino)‐propyl]‐amide dibromide ( 12‐6‐12 ). Thermogravimetric analysis showed the excellent thermal stability of surfactants and no structural degradation was observed at temperatures up to 250 °C. The long‐term thermal stability of the surfactants was investigated with the aid of spectroscopic techniques such as nuclear magnetic resonance (NMR (1H and 13C) and Fourier transform infrared (FTIR) spectroscopy. Both surfactants were found to be thermally stable, and no changes in structure were observed after aging for 10 days at 90 °C. The interfacial tension of the surfactants was measured at three different temperatures (30, 60, and 80 °C), and the results showed a decrease in interfacial tension with increasing temperature and increasing spacer length of the surfactants. Rheological measurements were used to assess the interactions between the cationic gemini surfactant and cationic polyacrylamide. The addition of cationic surfactant reduced the viscosity and storage modulus of the polymer at low shear rate and frequency due to surfactant–polymer interactions and charge screening. The investigated surfactant–polymer system has great potential in high‐temperature carbonate reservoirs, where conventional anionic surfactants are not recommended due to high adsorption.  相似文献   

6.
Dodecyl diphenyl oxide disulfonate with different counterions (C12MADS‐M, M = Na, Mg, Ca) were synthesized using dodecyl alcohol, diphenyl oxide and SO3 as reagents through alkylation–sulfonation–neutralization. The structure of the product was characterized by infrared spectroscopy and electrospray ionization‐mass spectrometry. The surface and interfacial prosperities were investigated. The critical micelle concentration (CMC) of C12MADS‐Na, C12MADS‐Mg and C12MADS‐Ca was 1.23 × 10?3, 5.25 × 10?4 and 5.37 × 10?4 mol/L, respectively. The surface tension at CMC (γCMC) of C12MADS‐Na, C12MADS‐Mg and C12MADS‐Ca was 43.2, 37.1 and 36.6 mN/m, respectively. Interfacial tensions between crude oil and C12MADS‐M aqueous solution gave only a small change in the calcium chloride concentrations ranging from 50 to 10,000 mg/L.  相似文献   

7.
The main objective of this research was to enhance the understanding of the oil‐structuring properties of natural waxes. A number of natural food‐grade waxes were evaluated for their oil‐gelling properties using a combination of techniques, including rheology, differential scanning calorimetry, and polarized light microscopy. Based on the rheological measurements (oscillatory, flow, and thixotropic behavior), we found that rice bran wax, carnauba Brazilian wax and fruit wax showed weak gelling behavior in rice bran oil (prepared at concentrations as high as 5 % w/w), exhibiting relative low elastic moduli that displayed a high frequency dependency. On the contrary, carnauba wild wax, berry wax, candelilla wax, beeswax, and sunflower wax were efficient oleogelators forming strong gels at concentration of <2 % w/w. We attempt to explain these observed differences in gelling behavior by crystal morphology, network formation, and the final amount of crystalline phase.  相似文献   

8.
The present investigation deals with the mechanical, thermal and rheological properties of binary HDPE/EPR blends at various dispersed phase (EPR) concentrations. The effects of EPR concentration on tensile, impact properties of the pure HDPE and HDPE/EPR blends were studied. Analysis of the tensile data in terms of various theoretical models revealed the variation of stress concentration effect with blend composition. Rheological study was carried out to investigate the change in viscosity with shear rate. DSC results show decrease in percent crystallinity of HDPE upon incorporation of EPR except at 20 wt% rubber concentrations wherein the percent crystallinity has shown marginal increment.  相似文献   

9.
The surface tension, surface dilational rheology, foaming and displacement flow properties of alpha olefin sulfonate (AOS) with inorganic salts were studied. The foam composite index (FCI), which reflects foaming capacity and foam stability, is used to evaluate foam properties. It is found that sodium and calcium salts can lead to decreases in AOS surface tension, critical micelle concentration, and molecular area at the gas–liquid interface. Sodium ions reduce the surface dilational viscoelasticity (E) and FCI of AOS, while calcium ions can enhance the E of AOS and make the FCI of AOS reach a maximum. In the solution containing calcium and sodium ions, the FCI of AOS is improved. Crude oil reduces the FCI of AOS. Injection pressure and displacing efficiency of AOS alternating carbon dioxide (CO2) injection are higher than injections of water alternating with CO2 or CO2 alone in low permeability cores.  相似文献   

10.
To examine the effect of protein adsorption on the fat–water interface on the surface composition of spray-dried particles, whey, hydrolyzed whey, and soy protein isolate emulsions were prepared at three different protein to fat ratios of 1:1, 1:5, and 1:10 and spray dried. Non-hydrolyzed whey protein isolate (WPI) and the more hydrolyzed whey protein solutions at 20.2% degree of hydrolysis (DH) had significantly lower surface tension values with fat than without fat. The correlation between the reduction of surface tension value of an emulsion and the increase in protein surface composition of powder particles was observed for WPI and HWP406 but was not observed for the other protein isolate types. It was clear that the spray-dried emulsions had fat as the dominant component on the surface of the powder particles and that the amount of protein on the surface became severely depressed at higher fat addition levels. In terms of its powder morphology, the unique powder structures such as the indentations and folds usually found on the surface of protein containing powders were not evident because they were compromised by the presence of high surface fat. The powder with higher surface fat had more crumpled particle structures and dimpled surfaces.  相似文献   

11.
Long-chain branched polypropylenes were synthesized from a maleic anhydride grafted polypropylene (PPg). Different levels of branching were generated by reactive processing using four chain-linking agents: glycerol, 1,4-butanediol, 1,4-phenylenediamine, and the epoxy resin bisphenol-A diglycidyl ether. The results from Fourier transform infrared and size-exclusion chromatography confirm the grafting of the chain-linking agents onto grafted polypropylene and the generation of long-chain branches. In addition, the rheological and morphological results show that 1,4-phenylenediamine produces the largest increment of branching at significantly lower concentrations than the other chain-linking agents. Moreover, 1,4-phenylenediamine gives place to branched polypropylenes with narrower distribution of molecular structures.  相似文献   

12.
Cake shortening is an important ingredient that imparts taste and texture in the cake as the final product. Hydrogenated shortenings contain high amounts of trans fatty acids, which is considered a risk factor for obesity, cancers, and cardiovascular diseases. In this research, chemically interesterified blends of canola oil (CO) and palm stearin (PS) were recruited in order to formulate zero‐trans shortening, specifically for cake application. The optimization of shortening formulation was performed by Design‐Expert software, considering melting, congelation, textural, and rheological properties of cake shortening as responses. The formulated shortening in the weight ratio of 66.41:33.58 (PS:CO) (%, w/w) was analyzed and compared with two commercial cake shortenings in terms of fatty acid and triacylglycerol composition, slip melting point (SMP), solid fat content (SFC), and rheological and textural properties. The results showed that the formulated zero‐trans cake shortening with 0.2% trans, 47.2% saturated fatty acids, SMP of 40.9 °C, SFC of 10.51% at 37 °C, firmness of 1522.5 g, and linear viscoelastic range of 0.035% had the most acceptable criteria among cake‐shortening samples. The findings of this study offer insights into the relationship between shortening functionality and physicochemical properties and serve as a base for future studies on zero‐trans shortenings formulation.  相似文献   

13.
The present paper describes the synthesis and evaluation of surface properties of a novel series of anionic surfactant, namely sodium 3‐(3‐alkyloxy‐3‐oxopropoxy)‐3‐oxopropane‐1‐sulfonate with varying alkyl chain length (C8–C16). Synthesis involves initial formation of the 3‐alkyloxy‐3‐oxopropyl acrylate along with fatty acrylate during the direct esterification of fatty alcohol with acrylic acid in the presence of 0.5 % NaHSO4 at 110 °C followed by sulfonation of the terminal double bond of the 3‐alkyloxy‐3‐oxopropyl acrylate. Synthesized compounds were evaluated for surface and thermodynamic properties such as critical micelle concentration (CMC), surface tension at CMC (γcmc), efficiency of surface adsorption (pC20), surface excess (Γmax), minimum area per molecule at the air–water interface (Amin), free energy of adsorption (?G°ads), free energy of micellization (?G°mic), wetting time, emulsifying properties, foaming power and calcium tolerance. Effect of chain length on CMC follows the classic trend, i.e. decrease in CMC with the increase in alkyl chain length. High pC20 (>3) value indicates higher hydrophobic character of the surfactant. These surfactants showed very poor wetting time and calcium tolerance, but exhibited good emulsion stability and excellent foamability. Foaming power and foam stability of C14‐sulfonate were found to be the best among the studied compounds. Foam stability of C14‐sulfonate was also studied at different concentrations over time and excellent foam stability was obtained at a concentration of 0.075 %. Thus this novel class of surfactant may find applications as foam boosters in combination with other suitable surfactants.  相似文献   

14.
Sulfosuccination of castor oil-derived methyl ricinoleate and methyl 12-hydroxy stearate have been carried out in the present work. Synthesis involves malenization of secondary alcohol of methyl ricinoleate/methyl 12-hydroxy stearate followed by sulfonation of maleic monoester to generate double-headed dianionic surfactant with carboxylate and sulfosuccinate functionalities in the head group region. Various reaction conditions were optimized for maximum production of these two sulfosuccinates. Both compounds were evaluated for surface and detergency properties. The surface tension study indicated that the critical micelle concentration of sulfosuccinated methyl ricinoleate and methyl 12-hydroxy stearate is 0.26 and 0.11 mM, respectively. The detergency property of these two surfactants indicated that they were excellent in wetting time emulsification and Ca-tolerance. However, these two surfactants exhibited very poor foam height and foam stability.  相似文献   

15.
Biobased surfactants were synthesized using poly(glycerol-succinate) as the polar head group and variable acyl groups as hydrophobic tails. Acyl chain lengths ranged from 8 to 14 carbon atoms. The resulting oligomeric surfactants were characterized by quantitative 13C nuclear magnetic resonance (NMR), acid values and size exclusion chromatography. Investigation of the physicochemical properties of the acyl poly(glycerol-succinate) surfactants revealed their potential for use in a wide array of applications. The acyl poly(glycerol-succinate) functional properties appeared to be particularly concentration-dependent. This study highlights the relative impact of acyl chain length on the polymeric structure, physicochemical and functional behaviors, and biodegradability of the acyl poly(glycerol-succinate) surfactants.  相似文献   

16.
Our present research describes the surface properties of three biobased anionic surfactant synthesized from vinylguaiacol and 11-bromo undecanoic acid. To further improve its hydrophobicity and bioavailability, amino acid head group incorporation was carried out. All these synthesized compounds were thoroughly characterized using NMR and mass spectroscopy. The performance properties such as foaming, wetting, emulsification value and calcium tolerance were evaluated. The studied surfactants possess excellent emulsion stability and moderate calcium tolerance as compared to commercially available surfactant sodium lauryl sulfate (SLS). The micelle formation and the thermodynamics involved at the air–water interface were estimated from surface tension measurements. These surfactants showed a higher tendency towards adsorption at the air–water interface than micellization. Dynamic light scattering and steady state fluorescence anisotropy study were carried out to shed light on the bulk micellization properties of the synthesized surfactant. Along with spherical micelles of <5 nm size, larger aggregates (35–84 nm) were observed with higher anisotropy values. FESEM images further confirmed the larger spherical micelles formed by these surfactants. The surfactants formed chiral aggregates above the critical micelle concentration as indicated by circular dichroism spectra. These surfactants may be suitable candidates for additives to detergents to improve their calcium tolerance especially in the case of hard water. Furthermore, a low foaming ability along with high emulsion stability may find these surfactants to be better replacement of the conventional surfactant used as emulsifiers in many industrial applications.  相似文献   

17.
Three novel imidazolium-based gemini surfactants had been synthesized and characterized using different spectroscopic techniques. The surface properties of the synthesized surfactants were determined using surface tension measurements at 20 °C. The surface parameters including critical micelle concentration (CMC), π CMC, Pc20, Γmax and A min were determined. The synthesized compounds were evaluated as corrosion inhibitors for carbon steel in 0.5 M HCl solution using the weight loss and polarization techniques. The biological activity of these surfactants was evaluated against sulfate reducing bacteria using most probable number method. The results indicate that the synthesized compounds have good surface properties and are proper corrosion inhibitors for low carbon steel, with a high inhibition efficiency observed around their CMC. These compounds exhibit a significant biocidal activity against sulfate reducing bacteria.  相似文献   

18.
The densities , velocities of sound , and surface tension , of anionic surfactant sodium dodecyl sulfate in presence of aqueous saccharides (fructose and maltose) with concentrations 0.01 and 0.10 mol kg?1 have been reported over a wide temperature range (293.15–313.15 K) at an interval of 5 K. The apparent molar volume , isentropic compressibility , and apparent molar adiabatic compression values have been calculated using densities and velocities of sound data. Both, and vary non‐linearly at lower concentration of surfactant and tend to achieve linearity at higher concentration of surfactant in presence of saccharides. From the surface tension data, parameters like surface excess , minimum area occupied by the surfactant molecule at the saturated air/solution interface and surface film pressure have been computed. The effect of additives on these parameters has been discussed in terms of different types of the interactions pertaining in the micellar system. An attempt has also been made to draw an inference regarding the effect of these additives on the critical micelle concentration of the surfactant.  相似文献   

19.
In recent years, the demand for a natural plant-based polymer with potential functions from plant sources has increased considerably. The main objective of the current study was to study the effect of chemical extraction conditions on the rheological and functional properties of the heteropolysaccharide/protein biopolymer from durian (Durio zibethinus) seed. The efficiency of different extraction conditions was determined by assessing the extraction yield, protein content, solubility, rheological properties and viscoelastic behavior of the natural polymer from durian seed. The present study revealed that the soaking process had a more significant (p < 0.05) effect than the decolorizing process on the rheological and functional properties of the natural polymer. The considerable changes in the rheological and functional properties of the natural polymer could be due to the significant (p < 0.05) effect of the chemical extraction variables on the protein fraction present in the molecular structure of the natural polymer from durian seed. The natural polymer from durian seed had a more elastic (or gel like) behavior compared to the viscous (liquid like) behavior at low frequency. The present study revealed that the natural heteropolysaccharide/protein polymer from durian seed had a relatively low solubility ranging from 9.1% to 36.0%. This might be due to the presence of impurities, insoluble matter and large particles present in the chemical structure of the natural polymer from durian seed.  相似文献   

20.
Calcareous phosphate ore can be utilized as a cost-effective alternate to other inorganic fillers for polymer-based composites. In this study, composites of high-density polyethylene and phosphate rock ore particles were prepared by melt blending and injection-molding techniques. The thermomechanical, rheological, and mechanical properties of these composites were studied to investigate the effect of filler loading on their functionality. The reduction in the crystallinity of phosphate ore/high-density polyethylene composites was observed compared to that of the neat high-density polyethylene. The relative crystallinity of the neat high-density polyethylene decreases from 53 to 30% by the addition of 2.5–15 wt% of ore, respectively. Comparison of the linear dynamic viscoelasticity for the neat high-density polyethylene and the ore-filled composites shows t a monotonic increase in both storage modulus and loss modulus with the increasing frequency. The viscoelastic behavior at high frequencies remains unaffected. However, at lower frequencies, both G′ and G″ exhibit diminished frequency dependence. It was also observed that higher filler content decreased the tensile and impact strength, whereas the Young's modulus of the composites increased. The morphological analysis shows relatively weak interaction between the fillers and the matrix because of agglomeration which in turn adversely affects the mechanical properties of the composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号