首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-density fiber-optic DNA random microsphere array   总被引:6,自引:0,他引:6  
A high-density fiber-optic DNA microarray sensor was developed to monitor multiple DNA sequences in parallel. Microarrays were prepared by randomly distributing DNA probe-functionalized 3.1-microm-diameter microspheres in an array of wells etched in a 500-microm-diameter optical imaging fiber. Registration of the microspheres was performed using an optical encoding scheme and a custom-built imaging system. Hybridization was visualized using fluorescent-labeled DNA targets with a detection limit of 10 fM. Hybridization times of seconds are required for nanomolar target concentrations, and analysis is performed in minutes.  相似文献   

2.
Song L  Ahn S  Walt DR 《Analytical chemistry》2006,78(4):1023-1033
We report a multiplexed high-density DNA array capable of rapid, sensitive, and reliable identification of potential biological warfare agents. An optical fiber bundle containing 6000 individual 3.1-mum-diameter fibers was chemically etched to yield microwells and used as the substrate for the array. Eighteen different 50-mer single-stranded DNA probes were covalently attached to 3.1-mum microspheres. Probe sequences were designed for Bacillus anthracis, Yersinia pestis, Francisella tularensis, Brucella melitensis, Clostridium botulinum, Vaccinia virus, and one biological warfare agent (BWA) simulant, Bacillus thuringiensis kurstaki. The microspheres were distributed into the microwells to form a randomized multiplexed high-density DNA array. A detection limit of 10 fM in a 50-microL sample volume was achieved within 30 min of hybridization for B. anthracis, Y. pestis, Vaccinia virus, and B. thuringiensis kurstaki. We used both specific responses of probes upon hybridization to complementary targets as well as response patterns of the multiplexed array to identify BWAs with high accuracy. We demonstrated the application of this multiplexed high-density DNA array for parallel identification of target BWAs in spiked sewage samples after PCR amplification. The array's miniaturized feature size, fabrication flexibility, reusability, and high reproducibility may enable this array platform to be integrated into a highly sensitive, specific, and reliable portable instrument for in situ BWA detection.  相似文献   

3.
Li J  Zhong W 《Analytical chemistry》2007,79(23):9030-9038
The combination of suspension array with rolling circle amplification can lead to a sensitive and specific assay for single-nucleotide polymorphisms (SNPs) detection, as demonstrated in this study. A circular template generated by ligation upon the recognition of a point mutation on DNA targets was amplified isothermally by the Phi29 polymerase on microspheres. The elongation products were labeled with fluorochrome-tagged probes and detected in a flow cytometer, indicating the mutation occurrence. As low as 10 amol of mutated strands was detected by this assay, and positive mutation detection was achieved with a wild-type to mutant ratio of 10 000:1, which could be attributed to the high amplification efficiency of Phi29, the high binding capacity of the microspheres, and the remarkable precision of DNA ligase in distinguishing mismatched bases at the ligation site. A novel design of using two differently labeled detection probes on the same microsphere to target both the wild-type and mutant samples allowed parallel determination of the heterozygosity for two SNPs (K-ras G12C and TP53 R273H) in PCR amplicons prepared from human genomic DNA extracts. This ability lays the groundwork for further enhancing the assay throughput by using multiple fluorophores and microspheres with distinct properties.  相似文献   

4.
Guo J  Yang L  Chen L  Morisset D  Li X  Pan L  Zhang D 《Analytical chemistry》2011,83(5):1579-1586
We describe the development of a novel combined approach for high-throughput analysis of multiple DNA targets based on multiplex Microdroplet PCR Implemented Capillary gel electrophoresis (MPIC), a two-step PCR amplification strategy. In the first step, the multiple target DNAs are preamplified using bipartite primers attached with universal tail sequences on their 5'-ends. Then, the preamplified templates are compartmentalized individually in the microdroplet of the PCR system, and multiple targets can be amplified in parallel, employing primers targeting their universal sequences. Subsequently, the resulting multiple products are analyzed by capillary gel electrophoresis (CGE). Using genetically modified organism (GMO) analysis as a model, 24 DNA targets can be simultaneously detected with a relative limit of detection of 0.1% (w/w) and absolute limit of detection of 39 target DNA copies. The described system provides a promising alternative for high-throughput analysis of multiple DNA targets.  相似文献   

5.
In this work, we present a novel surface and assay for the simultaneous detection of DNA and protein analytes on a surface plasmon resonance (SPR) imaging sensor. A mixed DNA/oligo (ethylene glycol) (OEG) self-assembled monolayer (SAM) is created using a microarrayer. Thiol-modified single-stranded DNA sequences are spotted onto a gold-coated glass substrate. Backfilling with an OEG-modified alkanethiol creates a protein-resistant surface background. Antibodies conjugated to complementary single-stranded DNA sequences are immobilized on the surface through DNA hybridization. By converting only part of the DNA array into a protein array, simultaneous detections of DNA and protein analytes are possible. A model system of two cDNA sequences and two human pregnancy hormones are used to demonstrate the assay. No cross-reactivity was observed between DNA or protein analytes and nontargeted immobilized cDNA sequence or antibodies. A response from a detection of a single analyte in a mixture of protein and DNA analytes corresponds well with that of a single-analyte solution.  相似文献   

6.
The development of a chip-based sensor array composed of individually addressable agarose microbeads has been demonstrated for the rapid detection of DNA oligonucleotides. Here, a "plug and play" approach allows for the simple incorporation of various biotinylated DNA capture probes into the bead-microreactors, which are derivatized in each case with avidin docking sites. The DNA capture probe containing microbeads are selectively arranged in micromachined cavities localized on silicon wafers. The microcavities possess trans-wafer openings, which allow for both fluid flow through the microreactors/analysis chambers and optical access to the chemically sensitive microbeads. Collectively, these features allow the identification and quantitation of target DNA analytes to occur in near real time using fluorescence changes that accompany binding of the target sample. The unique three-dimensional microenvironment within the agarose bead and the microfluidics capabilities of the chip structure afford a fully integrated package that fosters rapid analyses of solutions containing complex mixtures of DNA oligomers. These analyses can be completed at room temperature through the use of appropriate hybridization buffers. For applications requiring analysis of < or = 10(2) different DNA sequences, the hybridization times and point mutation selectivity factors exhibited by this bead array method exceed in many respects the operational characteristics of the commonly utilized planar DNA chip technologies. The power and utility of this microbead array DNA detection methodology is demonstrated here for the analysis of fluids containing a variety of similar 18-base oligonucleotides. Hybridization times on the order of minutes with point mutation selectivity factors greater than 10000 and limit of detection values of approximately 10(-13) M are obtained readily with this microbead array system.  相似文献   

7.
An allele-specific oligonucleotide microarray was developed for rapid typing of pathogens based on analysis of genomic variations. Using a panel of Escherichia coli strains as a model system, selected loci were sequenced to uncover differences, such as single- or multiple-nucleotide polymorphisms as well as insertion/deletions (indels). While typical genomic profiling experiments employ specific sequences targeted to genomic DNA unique to a single strain or virulent gene, the present array is designed to type bacteria based on a patterned signature response across multiple loci. In the signature concept, all strains are interrogated by hybridizing their amplified DNA to an array containing multiple probe sequences. Allele-specific oligonucleotide probe sequences targeting each of these variable regions were synthesized and included in a custom fiber-optic array. For each locus, a set of specific probe sequences is selected, such that hybridization gives a binary signal/no signal response to each of the probes. Using this strategy for multiple loci, many pathogens or microorganisms could be classified using a limited number of probes. Because of the advantages of the fiber-optic array platform over other array formats, including sensitivity and speed, the platform described in this paper is capable of supporting a high-throughput diagnostic strategy.  相似文献   

8.
Gao A  Lu N  Dai P  Li T  Pei H  Gao X  Gong Y  Wang Y  Fan C 《Nano letters》2011,11(9):3974-3978
We herein report the design of a novel semiconducting silicon nanowire field-effect transistor (SiNW-FET) biosensor array for ultrasensitive label-free and real-time detection of nucleic acids. Highly responsive SiNWs with narrow sizes and high surface-to-volume-ratios were "top-down" fabricated with a complementary metal oxide semiconductor compatible anisotropic self-stop etching technique. When SiNWs were covalently modified with DNA probes, the nanosensor showed highly sensitive concentration-dependent conductance change in response to specific target DNA sequences. This SiNW-FET nanosensor revealed ultrahigh sensitivity for rapid and reliable detection of 1 fM of target DNA and high specificity single-nucleotide polymorphism discrimination. As a proof-of-concept for multiplex detection with this small-size and mass producible sensor array, we demonstrated simultaneous selective detection of two pathogenic strain virus DNA sequences (H1N1 and H5N1) of avian influenza.  相似文献   

9.
Low-density arrays were assembled into microfluidic channels hot-embossed in poly(methyl methacrylate) (PMMA) to allow the detection of low-abundant mutations in gene fragments (K-ras) that carry point mutations with high diagnostic value for colorectal cancers. Following spotting, the chip was assembled with a cover plate and the array accessed using microfluidics in order to enhance the kinetics associated with hybridization. The array was configured with zip code sequences (24-mers) that were complementary to sequences present on the target. The hybridization targets were generated using an allele-specific ligase detection reaction (LDR), in which two primers (discriminating primer that carriers the complement base to the mutation being interrogated and a common primer) that flank the point mutation and were ligated joined together) only when the particular mutation was present in the genomic DNA. The discriminating primer contained on its 5'-end the zip code complement (directs the LDR product to the appropriate site of the array), and the common primer carried on its 3' end a fluorescent dye (near-IR dye IRD-800). The coupling chemistry (5'-amine-containing oligonucleotide tethered to PMMA surface) was optimized to maximize the loading level of the zip code oligonucleotide, improve hybridization sensitivity (detection of low-abundant mutant DNAs in high copy numbers of normal sequences), and increase the stability of the linkage chemistry to permit re-interrogation of the array. It was found that microfluidic addressing of the array reduced the hybridization time from 3 h for a conventional array to less than 1 min. In addition, the coupling chemistry allowed reuse of the array > 12 times before noticing significant loss of hybridization signal. The array was used to detect a point mutation in a K-ras oncogene at a level of 1 mutant DNA in 10,000 wild-type sequences.  相似文献   

10.
11.
A label-free biosensor (for detection of DNA sequences) based on film-bulk-acoustic-resonator (FBAR) is presented in this letter. The FBAR's resonant frequency shifts to a lower value when a complementary single-strand DNA sequence is hybridized with a DNA probe sequence on an Au-coated FBAR surface. The sensor is capable of distinguishing a complementary DNA that is mismatched to a probe DNA by a single nucleotide. The label-free, highly sensitive and selective, and real-time detection of DNA sequence could easily be made into an array for combinatory DNA sequencing, and could possibly help geneticists to detect specific DNA sequences accurately and fast, without any expensive optical scanning or imaging.  相似文献   

12.
13.
Ahn S  Walt DR 《Analytical chemistry》2005,77(15):5041-5047
Salmonella spp. are one of the most problematic food pathogens in public health, as they are responsible for food poisoning associated with contamination of meat, poultry, and eggs. Thus, rapid and sensitive detection of Salmonella spp. is required to ensure food safety. In this study, a fiber-optic DNA microarray using microsphere-immobilized oligonucleotide probes specific for the Salmonella invA and spvB genes was developed for detection of Salmonella spp. Microarrays were prepared by randomly distributing DNA probe-functionalized microspheres (3.1-microm diameter) into microwells created by etching optical fiber bundles. Hybridization of the probe-functionalized microspheres to target DNA from Salmonella was performed and visualized using Cy3-labeled secondary probes in a sandwich-type assay format. In this study, 10(3)-10(4) cfu/mL of the target organism could be detected after 1-h hybridization without any additional amplification. The DNA microarray showed no cross-reactivity with other common food pathogens, including E. coli and Y. enterocolitica, and could even detect Salmonella spp. from cocktails of bacterial strains with only moderate loss of sensitivity due to nonspecific binding. This work suggests that fiber-optic DNA microarrays can be used for rapid and sensitive detection of Salmonella spp. Since fiber-optic microarrays can be prepared with different probes, this approach could also enable the simultaneous detection of multiple food pathogens.  相似文献   

14.
We have fabricated a flow-through biochip assembly that consisted of two different microchips: (1) a polycarbonate (PC) chip for performing an allele-specific ligation detection reaction (LDR) and (2) a poly(methyl methacrylate) (PMMA) chip for the detection of the LDR products using an universal array platform. The operation of the device was demonstrated by detecting low-abundant DNA mutations in gene fragments (K-ras) that carry point mutations with high diagnostic value for colorectal cancers. The PC microchip was used for the LDR in a continuous-flow format, in which two primers (discriminating primer that carried the complement base to the mutation being interrogated and a common primer) that flanked the point mutation and were ligated only when the particular mutation was present in the genomic DNA. The miniaturized reactor architecture allowed enhanced reaction speed due to its high surface-to-volume ratio and efficient thermal management capabilities. A PMMA chip was employed as the microarray device, where zip code sequences (24-mers), which were complementary to sequences present on the target, were microprinted into fluidic channels embossed into the PMMA substrate. Microfluidic addressing of the array reduced the hybridization time significantly through enhanced mass transport to the surface-tethered zip code probes. The two microchips were assembled as a single integrated unit with a novel interconnect concept to produce the flow-through microfluidic biochip. A microgasket, fabricated from an elastomer poly(dimethylsiloxane) with a total volume of the interconnecting assembly of <200 nL, was used as the interconnect between the two chips to produce the three-dimensional microfluidic network. We successfully demonstrated the ability to detect one mutant DNA in 100 normal sequences with the biochip assembly. The LDR/hybridization assay using the assembly performed the entire assay at a relatively fast processing speed: 6.5 min for on-chip LDR, 10 min for washing, and 2.6 min for fluorescence scanning (total processing time 19.1 min) and could screen multiple mutations simultaneously.  相似文献   

15.
Chan HM  Li HW 《Analytical chemistry》2011,83(24):9370-9377
A one-dimensional nanofibrillar array formed by the co-assembly of native and biotin-functionalized beta-amyloid (Aβ) peptide was developed for biomolecule sensing. With the presence of biotin moiety, a variety of biomolecular probes can be conjugated onto the nanofibrils, thus converting the protein assembly into a miniature biosensor. In this work, DNA probes were immobilized onto the fibril for the detection of cDNA sequences. The as-developed "DNA-nanoarray" achieved a detection limit at subattomole level (183 fM in 10 μL). This highly sensitive, yet simple, assay requires a trace amount of sample consumption (<10 μL) and is pretreatment-free. In addition, we reported the preparation of alternate-segmented amyloid nanofibrils with multifunctionality. The fibrils hereby serve as an encoded template that can be visualized with various fluorescence labeling dyes for barcode recognition purpose, and, hence, multiplex detection of biomolecules was achieved. Regarding that each protein nanofibril represents a single detection platform, a large number of single fibrils simultaneously are monitored with the dual-color TIRFM in a high-throughput manner.  相似文献   

16.
Wygladacz K  Radu A  Xu C  Qin Y  Bakker E 《Analytical chemistry》2005,77(15):4706-4712
An optical microsensor array is described for the rapid analysis of silver ions at low parts per trillion levels. Because the ionophore o-xylylenebis(N,N-diisobutyldithiocarbamate) (Cu-I) was reevaluated and shown to exhibit excellent selectivity for silver ions, ion-selective electrode (ISE) membranes were optimized and found to exhibit the lowest reported detection limit so far (3 x 10(-10) M). A corresponding Ag+-selective fluorescent optical microsensor array for the rapid sensing of trace level Ag+ was then developed. It was fabricated using plasticized PVC-based micrometer-scale fluorescent microspheres that were produced via a sonic particle casting device. They contained 156 mmol/kg Cu-I, 10 mmol/kg 9-(diethylamino)-5-[4-(15-butyl-1,13-dioxo-2,14-dioxanodecyl) phenylimino]benzo[a]phenoxazine (chromoionophore VII, ETH 5418), 2.3 mmol/kg 1,1' '-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (internal reference dye), and 14 mmol/kg sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate and were deposited onto the etched distal end of a 3200-microm-diameter optical fiber bundle. The microarray was characterized by fluorescence spectroscopy in samples containing 10(-12)-10(-8) M AgNO3 at pH 7.4, with selectivity characteristics comparable to the corresponding ISEs. The response time of the microsensor array was found to be less than 15 min for 10(-9) M AgNO3, which is drastically shorter than earlier data on optode films (8 h) and corresponding ISEs (30 min). A detection limit of 4 x 10(-11) M for Ag+ was observed, lower than any previously reported optode or silver-selective ISE. The microsensor array was applied for measurement of free silver levels in buffered pond water samples.  相似文献   

17.
We report a new electrochemical amplification strategy for an ultrasensitive electrochemical detection of DNA sequences using aggregates composed of a water-soluble, ferrocene-functionalized polythiophene. A two-step hybridization is performed at one addressing surface with PNA capture probes whereas the electrochemical detection is done on an electrode nearby. Specific and quantitative detection of DNA targets with a detection limit of 4 × 10(-16) M (about 4 zeptomoles or about 2500 copies of oligonucleotides) was achieved.  相似文献   

18.
We focused on changes in the electrical property of the open bridge-structured gold nanoparticles array consisting of 46-nm parent and 12-nm son gold nanoparticles by hybridization and applied it for a simple electrical DNA detection. Since a target DNA of a 24-mer oligonucleotide was added to the probe DNA modified 12-nm Au nanoparticles, which was arranged on the gap between the 46-nm Au particles, the response was read by an electrical readout system. Even in a simple measuring method, we obtained a rapid response to the cDNA with a high S/N ratio of 30 over a wide concentration range and a detection limit of 5.0 fmol. Moreover, the array discriminated 1-base mismatches, regardless of their location in the DNA sequence, which enabled us to detect single-nucleotide polymorphism, which is one of the important diagnoses, without any polymerase chain reaction amplification, sophisticated instrumentation, or fluorescent labeling through an easy-to-handle electrical readout system.  相似文献   

19.
A sequential injection analysis lab-on-valve (SIA-LOV) system was developed for the specific detection of single-stranded nucleic acid sequences via sandwich hybridization of specific DNA probes to the target sequence. One DNA probe was tagged with fluorescein; the other was biotinylated and immobilized to streptavidin-coated porous beads. The system was optimized with respect to buffer composition, length of hybridization and wash steps, and volumes and concentrations of components used. On-bead oligonucleotide hybridization was studied using UV detection at 260 nm, while a final dose response curve was quantified using fluorescence detection. A dynamic range of 1-1000 pmol was obtained for a synthetic DNA sequence that was homologous to a segment in the B. anthracis atxA mRNA. A within-day variation of 7.2% and a day-to-day variation of 9.9% was observed. Each analysis was completed within 20 min. Subsequently, the system was applied to the detection of atxA mRNA expressed in a surrogate organism and amplified using NASBA. The SIA-LOV will find its application in routine laboratory-based analysis of specific single-stranded DNA/RNA sequences. Future improvements will include the integration of dye-encapsulating liposomes for signal enhancement used in lieu of the single fluorophore-labeled probe in order to lower the limit of detection.  相似文献   

20.
Bowden M  Song L  Walt DR 《Analytical chemistry》2005,77(17):5583-5588
In this paper, DNA hybridization in a microfluidic manifold is performed using fluorescence detection on a fiber-optic microarray. The microfluidic device integrates optics, sample transport, and fluidic interconnects on a single platform. A high-density optical imaging fiber array containing oligonucleotide-labeled microspheres was developed. DNA hybridization was observed at concentrations as low as 10 aM with response times of less than 15 min at a flow rate of 1 microL/min using 50 microL of target DNA samples. The fast response times coupled with the low sample volumes and the use of a high-density, fiber-optic microarray format make this method highly advantageous. This paper describes the initial development, optimization, and integration of the microfluidic platform with imaging fiber arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号