共查询到18条相似文献,搜索用时 93 毫秒
1.
2.
以玉米籽粒为实验材料,研究低氧胁迫下发芽时间、低温胁迫与回温解冻下的温度及时间对发芽玉米中γ-氨基丁酸(γ-aminobutyric acid,GABA)含量的影响,对其低氧和低温胁迫工艺进行了优化,同时对胁迫期间发芽玉米籽粒中GABA代谢酶活性的变化进行了研究。结果表明:玉米经低氧胁迫发芽72 h后,在-18℃冷冻6 h和25℃回温4 h条件下,发芽玉米中GABA含量增加29.9倍,达到1.52 mg/g(以干质量计);低氧胁迫下发芽玉米籽粒主要是通过GABA支路富集GABA的。玉米籽粒是富集GABA的良好原料,且低氧与低温胁迫是富集发芽玉米中GABA的有效方式。 相似文献
3.
为优化盐胁迫条件下发芽苦荞富集γ-氨基丁酸(γ-aminobutyric acid,GABA)的最优培养条件,在单因素试验的基础上,采用响应面法探讨NaCl浓度、发芽时间和发芽温度对发芽苦荞中GABA含量的影响。结果表明:发芽苦荞在盐胁迫条件下富集GABA的最佳培养条件为:NaCl浓度34 mmol/L、发芽时间5 d、发芽温度31℃,在此条件下发芽苦荞中GABA富集量为250.06μg/g(以干质量计)。方差分析及验证实验显示,模型具有极显著的可靠性和拟合度(R~2=0.9611),可准确预测盐胁迫条件下苦荞发芽过程中GABA的富集量。 相似文献
4.
为优化低氧联合酸胁迫发芽工艺条件富集大麦芽中功能物质γ-氨基丁酸(GABA),本研究以大麦为试材,通过单因素实验和响应面实验,研究浸麦阶段通氧量、培养液pH和浸麦时间对大麦GABA含量的影响,进一步探讨发芽阶段中低氧发芽方式、通氧量、和发芽时间对于麦芽指标的影响并对其进行优化。结果表明:浸麦阶段控制通氧量为3 L/min,浸麦36 h为最佳浸麦条件;发芽最优方式为正常发芽1 d后再经低氧胁迫发芽3 d;发芽工艺优化得到的响应面回归模型极显著,各因素对GABA含量影响次序为培养液pH发芽时间通氧量,低氧胁迫发芽最优工艺为培养pH 4.0,通氧量4.5 L/min,发芽时间111 h,在此条件下麦芽中GABA含量最高为0.335 mg/gDW,相较大麦籽粒中GABA含量提高了33.6倍。 相似文献
5.
以玉米籽粒为材料研究低氧胁迫下籽粒发芽过程中主要生理生化和γ-氨基丁酸(γ-aminobutyric acid,GABA)含量变化,筛选出最适富集GABA的玉米品种。结果表明:5个品种玉米籽粒在72 h低氧胁迫发芽期间,芽长增长15.5~26.3 mm,呼吸强度提高1.7~3.2倍,干物质损失35.6%~40.6%,淀粉消耗15.5%~28.9%,还原糖和游离氨基酸含量分别增加1.7~4.7倍和7.4~13.3倍,GABA含量提高9.3~13.2倍,不同品种玉米籽粒发芽能力和GABA富集量呈显著差异,以京甜紫花糯(ZHN)品种发芽率最高,达到85.5%,且GABA富集量达到0.65mg/g(以干质量计),ZHN是富集GABA的最适玉米品种。低氧胁迫下发芽玉米中GABA含量与芽长、呼吸强度、游离氨基酸呈极显著正相关(P0.01),玉米经低氧胁迫发芽能提升玉米营养品质。 相似文献
6.
采用低氧通气的方法,对马铃薯富集γ-氨基丁酸(γ-aminobutyric acid,GABA)的培养工艺和培养液组分进行研究。首先通过正交实验优化了马铃薯富集GABA的工艺,接着采用Box-Behnken设计对影响马铃薯GABA富集的培养液组分进行了优化。结果表明,低氧通气富集马铃薯中GABA的最佳工艺为培养时间4h、培养温度20℃、培养液pH5.8。极差分析表明,培养液pH是最主要的影响因素,培养温度次之,最后是培养时间。在最适培养工艺下,马铃薯中GABA的富集量为0.3160mg/g,是原料中GABA含量的3.45倍;Box-Behnken设计优化的最优培养液组分为谷氨酸钠(MSG)浓度15.43mg/m L、CaCl2浓度2.81mmol/L和VB6浓度0.03mg/m L,在此条件下马铃薯中GABA含量为0.5749mg/g,是原料的6.28倍,说明优化后的培养液组分能显著提高马铃薯中GABA含量。方差分析表明,所建的回归模型显著,能很好地预测马铃薯中GABA含量的变化。 相似文献
7.
以东北大豆为原料,研究培养液组分对大豆发芽富集γ-氨基丁酸(γ-aminobutyric acid,GABA)的影响,利用响应面法优化了大豆发芽富集GABA的培养液组分,在此基础上对低盐胁迫下大豆发芽富集GABA的机理进行研究。结果表明:优化后有效的培养液组分为谷氨酸钠1.0 mg/mL、磷酸吡哆醛2.0 mmol/L、CaCl_2 2.0 mmol/L、NaCl 100 mmol/L,在此条件下,富集得到的发芽大豆中GABA含量较高,为(269.93±4.73)mg/100 g,比大豆发芽前提高了约10倍;盐胁迫下,发芽大豆谷氨酸脱羧酶(glutamate decarboxylase,GAD)活性和GABA含量随Na Cl浓度加大和胁迫时间延长而提高,同时大豆发芽期间GABA含量与其他指标之间相关性分析表明,盐胁迫下发芽大豆GABA含量与芽长、GAD活性、游离氨基酸和可溶性蛋白含量之间呈显著正相关,在低盐胁迫下,大豆发芽受到抑制,但促进了GAD活性的升高,游离氨基酸和可溶性蛋白质含量增加,富集产生了较多的GABA。 相似文献
8.
以蚕豆为试材,研究谷氨酸钠(MSG)、CaCl2、和VB6对发芽蚕豆谷氨酸脱羧酶(GAD)及γ-氨基丁酸(GABA)的影响,采用Box-behnken设计对发芽蚕豆富集GABA的培养液组分进行了优化,并对发芽蚕豆富集GABA的二次回归模型进行分析。结果表明,低氧联合盐胁迫下,MSG、CaCl2和VB6对发芽蚕豆GAD及GABA的影响均达到显著水平(P<0.005)。经过回归分析建立了GABA含量对培养液组分的二次回归模型,回归方程的决定系数达到0.976,说明方程能很好的预测GABA富集含量的变化。蚕豆富集GABA的最适培养液组分为MSG 1.1 mg/mL、CaCl2 6.1 mmol/L、VB6 72μmol/L,此时,GABA富集量达到(1.98±0.09)mg/g DW,为对照[(1.08±0.01)mg/g DW]的1.83倍。 相似文献
9.
为研究NaCl胁迫下Ca2+对发芽大豆主要生理指标和γ-氨基丁酸(gamma-aminobutyric acid,GABA)富集的调控作用,利用CaCl2和乙二醇二乙醚二胺四乙酸(ethylene glycol tetraacetic acid,EGTA)处理发芽大豆,研究NaCl胁迫下外源和内源Ca2+对发芽大豆主要生理代谢和GABA含量的影响。结果显示,发芽大豆经NaCl联合CaCl2处理,其芽长和呼吸速率显著增加,表明CaCl2缓解了NaCl对发芽大豆生长的抑制,同时过氧化氢酶及过氧化物酶活力显著提高,说明CaCl2可能是通过提高抗氧化酶活力来缓解NaCl胁迫下发芽大豆的抑制效应,而施用EGTA则呈相反的变化趋势;NaCl联合CaCl2处理后发芽大豆中GABA含量与单独NaCl处理无显著差异,但显著高于对照组;在NaCl联合CaCl2或EGTA基础上施用氨基胍,发芽大豆子叶中GABA含量分别下降17.1%和9.8%,胚中分别下降26.5%和8.5%,表明NaCl胁迫下施用CaCl2在促进发芽大豆中GABA富集的同时还可保证生物产量,且CaCl2和EGTA处理下多胺降解途径对GABA富集贡献降低。 相似文献
10.
通过发芽、冷冻2种方法富集大豆中γ-氨基丁酸(GABA)。结果表明,大豆在35℃水浴中浸泡4h、27℃培养2.5d的条件下发芽,豆芽中GABA含量为7.97mg/g,是未发芽大豆中含量的3.1倍;大豆在-35℃冷冻18h、30℃解冻18h的条件下,GABA含量为11.62mg/g,是未冷冻大豆中含量的4.6倍;冷冻与发芽相比,操作简单,富集效果好。 相似文献
11.
盐胁迫富集发芽大豆γ - 氨基丁酸的工艺优化 总被引:1,自引:0,他引:1
在单因素试验基础上,应用响应面试验研究氯化钠浓度、培养时间和培养温度对大豆发芽富集γ-氨基丁酸(γ-aminobutyric acid,GABA)的影响,目的是优化盐胁迫条件下发芽大豆富集GABA的最佳培养条件。研究结果表明:豆芽在盐胁迫条件下富集GABA的最优条件是氯化钠浓度133.5mmol/L、培养时间5.5d、培养温度33.3℃,在此条件预测的最高GABA富集量为1205.24μg/g。方差分析和验证实验显示,模型可准确的预测盐胁迫条件下大豆发芽过程中GABA的富集。 相似文献
12.
为优化柠檬酸胁迫藜麦富集γ-氨基丁酸(γ-aminobutyric acid,GABA)的最优培养条件,采用超声波提取,高效液相色谱法检测,在单因素试验的基础上,利用响应面法优化柠檬酸溶液浓度、培养温度以及培养时间对发芽藜麦中GABA含量的影响。结果表明:发芽藜麦在柠檬酸胁迫下富集GABA的最佳培养条件为柠檬酸溶液浓度2.00 mmol/L、培养温度25℃、培养时间48 h,在此培养条件下发芽藜麦中GABA含量为1.538 mg/g,是藜麦种子中GABA含量的3.8倍。体外降血压实验结果表明:柠檬酸胁迫藜麦发芽后血管紧张素转换酶抑制率为63%,分别是用去离子水发芽的藜麦和藜麦种子的1.3倍和1.9倍,即柠檬酸胁迫藜麦发芽后可以提高其降血压活性。研究结果为藜麦的进一步研究提供了一定的理论依据。 相似文献
13.
UV-B辐照下大豆发芽富集异黄酮品种筛选及发芽动力学 总被引:1,自引:0,他引:1
以天骄(TJ)、苏青1号(SQ1)、苏青3号(SQ3)和95-优1(95Y1)4 个品种的大豆为原材料,在中波紫外光(ultraviolet radiation B,UV-B)辐照条件下,进行发芽实验,以发芽5 d后大豆异黄酮含量及其关键酶活力为主要指标,并综合分析生理生化指标,筛选出富集大豆异黄酮的最适合品种。结果表明:发芽的天骄大豆异黄酮含量、苯丙氨酸解氨酶(phenylalnine ammonialyase,PAL)和查耳酮合酶(chalcone synthase,CHS)活力最大,豆芽质量良好,发芽率、芽长、呼吸强度、游离氨基酸和还原糖含量都显著高于其余品种,故天骄大豆籽粒是发芽富集异黄酮的良好品种。以天骄为原料,对其进行发芽动力学实验。结果表明:随着发芽时间的延长,异黄酮含量显著增加,第7天为发芽前的3.02 倍,PAL活力显著上升,CHS活力先上升后下降。大豆中可溶性蛋白等大分子物质含量呈减少趋势,游离氨基酸等小分子物质含量逐渐增加。本实验筛选出天骄为UV-B辐照条件下富集大豆异黄酮的最适品种。 相似文献
14.
15.
以高产γ-氨基丁酸(γ-aminobutyric acid,GABA)菌株MA-25和产降脂色素菌株MP-19为研究菌株,通过单因素、Plackett-Burman实验设计、Box-Behnken响应面实验筛选提高MA-25的GABA产量的红曲米培养条件,并筛选MP-19的色素对α-淀粉酶有最佳抑制效应的氨基酸,然后综合考虑代谢产物GABA产量、α-淀粉酶,蛋白酶和脂肪酶的最佳抑制率,设计正交实验分别选出四组MA-25和MP-19双菌联合发酵的最佳组合,最后考虑降脂能力的最大化。结果表明,优化培养条件是谷氨酸1.18%,葡萄糖+麦芽糖是1.16%,pH为6.08,MA-25红曲米的GABA最高得率5.608 mg·g-1,比优化前(4.651 mg·g-1)提高了20.58%,MP-19最佳降脂氨基酸为L-色氨酸(L-Trp)。双菌联合发酵最佳组合为:粳米20.0%,初始pH为6.5,硫酸铵1.0%,葡萄糖+麦芽糖为0.50%,谷氨酸为1.50%,L-Trp为1.0%,NaH2PO4 1.0%,水57.0%,GABA产量为5.400 mg·g-1,α-淀粉酶抑制率为57.15%,蛋白酶抑制率为28.14%,脂肪酶抑制率为29.67%。 相似文献
16.
微藻的脂肪酸含量与其应用价值有直接关系,而环境因素对微藻脂肪酸含量有着显著影响。本文以细胞密度、干重浓度、脂肪酸含量等为评价指标,研究了户外跑道池系统中不同盐度(20‰、25‰和30‰)、p H值(7.5、8.0和8.5)、氮源种类(尿素和碳酸氢铵)等环境因素下三角褐指藻户外生长、脂肪酸积累的规律。结果表明,随着培养基盐度的升高,三角褐指藻的增长速率变缓,在20‰盐度条件下获得最大生物量177.78 mg/L;在30‰盐度条件下获得最大脂肪酸含量123.99 mg/g;p H值8.0条件下,三角褐指藻生物量浓度及脂肪酸含量均达到最大值(166.39 mg/L和145.92 mg/g),而在p H值7.5条件下,三角褐指藻的生长受到抑制。尿素作为氮源较碳酸氢铵更有利于三角褐指藻的生长,最终生物量为150.83 mg/L,但以碳酸氢铵为氮源条件下,更利于脂肪酸的积累,脂肪酸含量达到169.72 mg/g。因此,户外跑道池中的最适培养条件为盐度20‰、p H值8.0、尿素为氮源。 相似文献