首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ba1– x Pb x TiO3 powder with a fixed composition was prepared by the reaction of BaTiO3 powders with molten PbCl2at various PbCl2/BaTiO3 molar ratios at 600° and 800°C in a nitrogen atmosphere. When 0.1 μm powder was used, the reaction was finished when x = 0.9. Two phases of BaTiO3and a solid solution of Ba1– x Pb x TiO3 coexisted, but the final phase gave a solid solution of Ba1– x Pb x TiO3 at 800°C. When 0.5 μm powder was used, the two phases coexisted in the products at 600°C at PbCl2/BaTiO3= 1.0. A sintered compact of Ba1– x Pb x TiO3 powders solid solution was prepared by hot isostatic pressing, and its dielectric constant was measured in the temperature range 20°–550°C.  相似文献   

2.
The electromechanical and electric-field-induced strain properties of x Pb(Yb1/2Nb1/2)O3· y PbZrO3·(1− x − y )PbTiO3 ( x = 0.12, 0.25, 0.37; y = 0.10–0.40) ceramics have been studied systematically as a function of Pb(Yb1/2Nb1/2)O3 (PYN) content and PbZrO3/PbTiO3 (PZ/PT) ratio. In addition, the effect of MnO2 on the electromechanical properties of 0.12Pb(Yb1/2Nb1/2)O3·0.40PbZrO3·0.48PbTiO3 was also investigated. The maximum transverse strain values of 1.6 × 10−3 for x = 0.12, 1.45 × 10−3 for x = 0.25, and 1.36 × 10−3 for x = 0.37 were obtained at the compositions which were regarded as the morphotropic phase boundary (MPB). The transverse strain was maximized at the MPB composition. The value of the maximum electromechanical coupling coefficient was 0.69 for y = 0.40 and x = 0.12 composition. In the 0.12Pb(Yb1/2Nb1/2)O3·0.40PbZrO3·0.48PbTiO3 composition, the temperature of the maximum dielectric constant decreased and the grain size increased with an addition of MnO2. The electromechanical coupling coefficient decreased while the mechanical quality factor rapidly increased with an addition of MnO2. These resulted mainly from the acceptor effect of manganese ions that were produced by doping MnO2 into the perovskite structure.  相似文献   

3.
Ferroelectric films, PbZr x Ti1− x O3 ( x = 0 to 0.6), have been prepared from corresponding metal alkoxides partially stabilized with acetylacetone through the sol-gel process. The films dip-coated in an ambient atmosphere were heat-treated at 400°C for decomposition of residual organics and then at temperatures between 500° and 700°C for crystallization of the films. The perovskite phase precipitated at temperatures above 560°C, accompanied by an increase in dielectric constant. The dielectric constant of the films, which was comparable with that of sintered bodies, showed a maximum (∼620) at around x = 0.52 in PbZr x Ti1− x O3. These films showed D – E hysteresis, with slightly higher values of coercive field, compared with those of sintered bodies.  相似文献   

4.
Uniform and relatively dense BaTiO3 thick films of 1–5 μm were prepared by an electrophoretic deposition process using submicrometer BaTiO3 powders (mean particle size: ∼0.2 μm). Two different BaTiO3 powders and solvent media were used to investigate the film quality and thickness control. The surface charge mechanism of BaTiO3 particles was explained according to the observed results. The microstructures were examined by means of SEM. The experimental results show that the thickness could be controlled independently of suspension concentration by keeping a constant applied voltage and a constant current drop in a given suspension. BaTiO3 thick films have good insulation resistance and dielectric properties such as a dielectric constant and a dissipation factor that are compatible with the data from conventional tape-cast BaTiO3 thin layers.  相似文献   

5.
The structural and dielectric properties of (1− x )BaTiO3– x BiScO3 ( x =0–0.5) ceramics were investigated to acquire a better understanding of the binary system, including determination of the symmetry of the phases, the associated dielectric properties, and the differences in the roles of Bi2O3 and BiScO3 substitutions in a BaTiO3 solid solution. The solubility limit for BiScO3 into the BaTiO3 perovskite structure was determined to be about x =0.4. A systematic structural change from the ferroelectric tetragonal phase to a pseudo-cubic one was observed at about x =0.05–0.075 at room temperature. Dielectric measurements revealed a gradual change from proper ferroelectric behavior in pure BaTiO3 to highly diffusive and dispersive relaxor-like characteristics from 10 to 40 mol% BiScO3. Several of the compositions showed high relative permittivities with low-temperature coefficients of capacitance over a wide range of temperature. Quantification of the relaxation behavior was obtained through the Vogel–Fulcher model, which yielded an activation energy of 0.2–0.3 eV. The attempt characteristic frequency was 1013 Hz and the freezing temperature, T f, ranged from −177° to −93°C as a function of composition. The high coercive fields, low remanent polarization, and high activation energies suggest that in the BiScO3–BaTiO3 solid solutions, the polarization in nanopolar regions is weakly coupled from region to region, limiting the ability to obtain long-range dipole ordering in these relaxors under field-cooled conditions.  相似文献   

6.
Ceramic samples with the nominal composition (1− x ) BaTiO3+ x Ba3Ti2YO8.5 ( x =0−0.535) were prepared by the mixed oxide method. X-ray diffraction (XRD) analysis shows that the materials are of single phase with a cubic symmetry as x ≤0.16. The compositions of the solid solutions ( x ≤0.16) can be expressed equivalently as Ba(Ti1− y Y y )O3−δ ( y ≤0.122, y = x /(1+2 x )). For x >0.16, the materials are diphasic composites consisting of Ba(Ti1− y Y y )O3 ( y =0.122) and Ba3Ti2YO8.5. The microstructure observation by scanning electron microscopy supports the XRD result. The dielectric behavior and phase transitions of the solid solutions ( x ≤0.16) vary with different Y concentrations. The dielectric constant of the composites ( x >0.16) follows approximately the Lichteneker relation in a wide temperature range.  相似文献   

7.
BaTi1−2 y Ga y Nb y O3 (BTGN) (0≤ y ≤0.35) powders were synthesized at 1300°C by the conventional solid-state method. Room temperature x-ray diffraction patterns for y ≤0.025 and 0.05≤ y ≤0.30 can be indexed as the tetragonal ( P 4 mm ) and cubic ( Pm     m ) polymorphs of BaTiO3, respectively, whereas y =0.35 consists of a mixture of the cubic polymorph of BaTiO3 and an 8H hexagonal-type perovskite ( P 63/ mcm ) isostructural with Ba8Ti3Nb4O24. Scanning electron microscopy shows the microstructures of BTGN ceramics ( y ≤0.30) sintered at 1500°C to consist of fine grains (1–3 μm) within a narrow grain size and shape distribution. Room temperature transmission electron microscopy for y ≤0.08 reveals core–shell structures and (111) twins in some grains; however, their relative volume decreases with y . Energy dispersive spectroscopy reveals the cores to be Ga and Nb deficient with respect to y . For y >0.08 there is no evidence of core–shell structures, however, some grains have a high density of dislocations, consistent with chemical inhomogeneity. BTGN ceramics exhibit a diverse range of dielectric behavior in the temperature range 120–450 K and can be subdivided into two groups. 0.025≤ y ≤0.15 display modest ferroelectric relaxor-type behavior, with high room temperature permittivity, ɛ25', (>300 at 10 kHz), whereas 0.25≤ y ≤0.30 are temperature and frequency stable dielectrics with ɛ25'<100 that resonate at microwave frequencies with modest quality factors, Q × f , ∼3720 GHz (at ∼5 GHz) for y =0.30.  相似文献   

8.
In the course of searching environmental friendly lead-free relaxor ferroelectrics a complete phase diagram of barium zirconate titanate, Ba(Zr x Ti1− x )O3 system with compositions 0.00≤ x ≤1.00 has been developed based on their dielectric behavior. It has been shown that BaZr x Ti1− x O3 system depending on the composition, successively depicts the properties extending from simple dielectric (pure BaZrO3) to polar cluster dielectric, relaxor ferroelectric, second order like diffuse phase transition, ferroelectric with pinched phase transitions and then to a proper ferroelectric (pure BaTiO3). A comprehensive structure–property correlation of BaZr x Ti1− x O3 ceramics has been studied to understand the various ferroelectric phenomena in the whole phase diagram.  相似文献   

9.
The effect of Mn doping on the cubic to hexagonal phase transition temperature in BaTiO3 has been determined by quenching samples with different Mn contents from a range of temperatures. Under conditions of equilibrating samples in air over the range 1000°–1400°C, cubic solid solutions BaTi1− x Mn x O3−δ form over the range 0≤ x ≤0.015(5), whereas hexagonal solid solutions form for x ≥0.02, depending on the temperature. The results are compared with those on doping BaTiO3 with Fe3+ and observations made concerning acceptor doping with Ti3+.  相似文献   

10.
Multiferroic Bi0.95− x La0.05Tb x FeO3 (BLTFO) ceramics were prepared by hot-pressing. It was found that their dielectric properties were very sensitive to sintering temperature. The samples hot-pressed at 740°C show stable dielectric constant and rather low loss (∼1%) in the frequency range up to 1 MHz. When the nominal content of Tb is <0.08, the atomic arrangement keeps the R 3 c symmetry, while a phase transition appears at x ≈0.08–0.10. The introduction of Tb enhances the coercive field of the BLTFO ceramics and then restrains the ferroelectricity gradually. The doping of Tb at x ≤0.10 increases the ferromagnetization.  相似文献   

11.
Sr-doped PbZrO3 antiferroelectric (AFE) thin films have been fabricated on the platinum-buffered silicon substrates via the sol–gel technique. The temperature-dependent dielectric properties results indicated that the AFE phase was stabilized for the Sr-modified PbZrO3 thin films with a Curie temperature of 251°C. The recoverable energy density and energy efficiency of the Sr-doped PbZrO3 thin films were enhanced by the doping of strontium. Compared with the pure PbZrO3 AFE thin films, the performance against fatigue of the Sr-doped PbZrO3 thin films were also improved greatly.  相似文献   

12.
The structure and dielectric properties of (1− x )Pb(Sc2/3W1/3)O3–( x )Pb(Zr/Ti)O3 ceramics have been investigated over a full substitution range. All compositions with x < 0.5 adopt a cubic perovskite structure; however, for x ≤ 0.25 a doubled cell results from a 1:1 ordered distribution of the B-site cations. The structural order in Pb(Sc2/3W1/3)O3 (PSW) can be described by a random-site model with one cation site occupied by Sc3+ and the other by a random distribution of (Sc1/33+W2/36+). The ordering is destabilized in solid solutions of PSW with PbZrO3 (PSW–PZ), but stabilized by PbTiO3 in the (1− x )PSW–( x )PT system. The changes in order are accompanied by alterations in the dielectric response of the two systems. For PSW–PZ the temperature of the permittivity maximum ( T ɛ,max) increases linearly with x ; however, for PSW–PT T ɛ,max decreases in the ordered region (up to x = 0.25) and then increases rapidly as the order is lost. Similar effects were produced by modifying the degree of order of (0.75)PSW–(0.25)PT; when the order parameter was reduced from ∼1.0 to ∼0.65, T ɛ,max increased by more than 60°C.  相似文献   

13.
Pb0.97La0.02(Zr0.87− x Sn x Ti0.13)O3 (PLZST, x =0.27, 0.17, 0.07)) thin films with the compositions in ferroelectric rhombohedral (FER) region, near the morphotropic phase boundary (MPB), were deposited on the Pt-electroded silicon (PtSi) substrates by the sol–gel process. The phase structure and surface morphology of PLZST thin films were analyzed by XRD and SEM, respectively. The dc electric field and temperature-dependent dielectric properties of the PLZST thin films were investigated in detail. The results indicated that the dielectric constant, remnant polarization, and the Curie temperature ( T c) of PLZST films were elevated with the decrease of Sn content. Hence, the larger dielectric tunability (τ) was obtained for PLZST thin films with x =0.07, and the maximum τ value was 78.1%.  相似文献   

14.
A working subsolidus phase diagram for the system BaTiO3–Ba5Nb4O15 has been determined by firing sol–gel-synthesized samples over a range of temperatures. The main difference from previous diagrams is the greater extent of the Nb-doped BaTiO3 cubic solid solutions, BaTi1−5 x Nb4 x O3, at lower temperatures with x extending to 0.09 at 900°C, but only 0.05 at 1400°C. Electrical property measurements show that compositions with large x ( x ≥0.0025) are highly insulating for pellets sintered at 1300°C in air, followed by a slow cool. Compositions with low x , however, exhibit a residual semiconducting grain core and are not fully reoxidized readily. Composition dependence of the dielectric properties shows a continuous and smooth transition from classic ferroelectric behavior with pure BaTiO3 to normal dielectric response with a temperature-independent relative permittivity of approximately 22–24 for x >∼0.08. At intermediate compositions, ranges of both relaxor ferroelectric and quasi-ferroelectric behavior are observed. Possible reasons for an observed anomalous increase in value of the permittivity at the ferroelectric transition temperature at low x , which is superposed on an overall decrease in permittivity with increasing x , are discussed.  相似文献   

15.
The microwave dielectric properties and microstructures of compounds in the solid solution series x BaTiO3–(1− x )La(Mg1/2Ti1/2)O3 (BTLMT) have been investigated. The structural phase transitions that occur as a function of x have been studied and are related to changes in the dielectric properties. For compounds where x ≤ 0.1, X-ray diffraction (XRD) showed evidence of 1:1 ordering between Mg and Ti cations. For x ≤ 0.3, XRD and electron diffraction revealed that compounds were tilted in both antiphase and in-phase. However, for 0.3 < x < 0.7, only antiphase tilting was present. The temperature coefficient of resonant frequency (τf) vs the relative permittivity (ɛr) was linear until x = 0.5 at which point in the solid solution the transition to a nontilted structure resulted in nonlinear behavior. τf values close to zero (−2 ppm/°C) were achieved at x = 0.5 (ɛr∼ 60), which had a quality factor ( Q · f o) of 9600 GHz.  相似文献   

16.
Microwave dielectric properties of Ca1- x Sm2 x /3TiO3 ceramics were investigated as a function of the amount of Sm3+ substitution (0.0 ≤ x ≤ 0.8). The structure was changed from orthorhombic perovskite at x = 0.0 to tetragonal at x = 0.6. As the calcium vacancy concentration increased with increased Sm3+ substitution, the unloaded Q value (similar/congruent 1/tan delta) increased up to the solid-solution limit at x = 0.6 and then decreased because of formation of the secondary phase Sm2Ti2O7. The dielectric constant decreased with increased Sm3+ substitution. The effects of Sm3+ substitution on dielectric loss and dielectric constant of the specimens were analyzed by the infrared reflectivity spectra in the range 50–4000 cm−1, which were evaluated using the Kramers-Kronig analysis and classical oscillator model. The correlations among dielectric constant, dielectric loss, and dispersion parameters were studied.  相似文献   

17.
Piezoelectric ceramics Na1− x Ba x Nb1− x Ti x O3 with low BaTiO3 concentrations x have been prepared by the solid-state reaction method, and their ferroelectric and piezoelectric properties have been studied. The ceramics are classic ferroelectrics when x ≤0.10, and the ferroelectric–paraelectric phase transition becomes diffusive when x ≥0.15. A low doping level of BaTiO3 changes the NaNbO3 ceramics from antiferroelectric to ferroelectric. With the increase in BaTiO3 doping level, the Curie temperature of ceramics decreases linearly and the remnant polarization and coercive field also decrease, while their dielectric constant increases. Na0.9Ba0.1Nb0.9Ti0.1O3 ceramics show the largest piezoelectric constant d 33 (147 pC/N) and good sinterability, suggesting that it is a good candidate for lead-free piezoelectric ceramics.  相似文献   

18.
Dielectric ceramics in the system (Zn1− x Co x )TiO3 ( x = 0–1) were synthesized by the solid-state reaction route. The phase distribution, microstructure, and dielectric properties were characterized by using powder X-ray diffraction analysis, electron microscopy, and microwave measurement techniques. Three phase composition regions were identified in the specimens sintered at 1150°C; [spinel + rutile] at 0 ≤ x ≤ 0.5, [spinel + ilmenite + rutile] at 0.5 < x ≤ 0.7, and [ilmenite] phase at 0.7 < x ≤ 1. For the 0 ≤ x ≤ 0.5 region, the amount of Ti-rich precipitates incorporated into the spinel phase decreased with the Co content at 0 ≤ x ≤ 0.5, with a concomitant increase of the rutile phase. The ilmenite phase appeared for high Co content. The microwave dielectric properties depended on the phase composition and volume according to the three phase regions, where the relative amount of rutile to the spinel or ilmenite determined the dielectric properties. The dielectric constant as a function of Co addition was modeled with a Maxwell mixing rule. An optimum phase distribution was determined in this system with dielectric constant of 25, a Q * f 70 000 GHz, and a low temperature coefficient of the resonant frequency.  相似文献   

19.
PbTiO3(PT)-PbO-SiO2 glass-ceramic thin films were pro-duced by a sol-gel process. The crystallization of PT oc-curred at ∼700°C and was higher than that in PT-PbO-B2 O3 sol-gel glass-ceramics. A pinhole-free thin film was obtained by a rapid thermal annealing process when the designed glass-forming phase content in the thin film was >24 vol%. The measured dielectric constants of the films fairly agreed with the predicted values, based on a parallel mixing model. The dielectric constant was 219 and the di-electric loss was 0.04 in the 0.6PT-0.4(PbO-SiO2) film that was fired at 700°C.  相似文献   

20.
Columnar and highly oriented (100) BaTiO3 and SrTiO3 thin films were prepared by a chelate-type chemical solution deposition (CSD) process by manipulation of film deposition conditions and seeded growth techniques. Randomly oriented columnar films were prepared on platinum-coated Si substrates by a multilayering process in which nucleation of the perovskite phase was restricted to the substrate or underlying layers by control of layer thickness. The columnar films displayed improvements in dielectric constant and dielectric loss compared to the fine-grain equiaxed films that typically result from CSD methods. Highly oriented BaTiO3 and SrTiO3 thin films were fabricated on LaAlO3 by a seeded growth process that appeared to follow a standard "two-step" growth mechanism that has been previously reported. The film transformation process involved the bulk nucleation of BaTiO3 throughout the film, followed by the consumption of this matrix by an epitaxial overgrowth process originating at the seed layer. Both BaTiO3 and PbTiO3 seed layers were effective in promoting the growth of highly oriented (100) BaTiO3 films. Based on the various processing factors that can influence thin film microstructure, the decomposition pathway involving the formation of BaCO3 and TiO2 appeared to dictate thin film microstructural evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号