首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 679 毫秒
1.
本文采用了石膏制备出的α半水为基础研究制备高强轻质墙体材料,分别研究了水灰比,双氧水、激发剂、缓凝剂、表面活性剂掺量对石膏试块强度和轻质化的影响,使用扫描电镜(SEM)分析石膏试块表面和内部的结晶情况.试验确定在水灰比0.45,每1 kg浆料双氧水掺量3.00 mL、激发剂掺量0.20 g,缓凝剂掺量0.50‰、表面活性剂掺量0.10‰的最优工艺条件下,墙体材料试块干基抗压强度为5.20 MPa,干基抗折强度为2.31 MPa,体积密度为0.80 g/cm3,具有明显的轻质高强特性.  相似文献   

2.
脱硫石膏为烟气脱硫过程中产生的副产品,其大量堆积会对环境造成污染。利用脱硫石膏制备发泡轻质材料,该材料可用作隔热、隔音材料。研究了石膏发泡剂和缓凝剂对脱硫石膏发泡轻质材料性能的影响,采用石膏发泡剂时,发泡倍数控制在1 100倍左右,脱硫石膏发泡轻质材料的密度可达1 g/cm3左右,脱硫石膏发泡轻质材料的常温耐压强度可达3 MPa左右。优选硼砂作为缓凝剂,硼砂配入量(质量分数,下同)为1%时,可以满足施工要求,并且添加硼砂对常温耐压强度影响小。正交试验表明:对常温耐压强度影响最大因素是石膏发泡剂的配入量。实验得到最优配方组成:石膏发泡剂配入量为0.065%、用水量为55 m L、硼砂配入量为1.3%、脱硫石膏称量100 g,在此条件下脱硫石膏发泡材料的常温耐压强度达到3.5 MPa。  相似文献   

3.
钢渣的低活性制约了其有效利用,在钢渣粉中分别掺入磷石膏、Na2CO3和Na2SO4作为激发剂,分别制成试块后测试其抗压强度,并利用XRD、综合热分析进行分析,讨论激发剂种类及其掺量对钢渣碳化的影响。研究结果表明:磷石膏的内掺掺量为2.5%时,可提升钢渣碳化率,其钢渣粉碳化固结体试件强度最大,且每公斤钢渣混合料(磷石膏掺量为2.5%)在经过碳化反应后可碳化并储存155 g的CO2。Na2CO3掺入量为1%时,其钢渣粉净浆试块在碳化后强度达到最大值65.7 MPa,其强度提升了58.7%。Na2SO4掺入量为1%时,试件强度为60.3MPa,其强度提升了45.7%。  相似文献   

4.
研究了磷石膏制备半水石膏粉的工艺条件,通过添加减水剂改善磷建筑石膏的力学性能。采用常规分析、XRD和扫描电镜等方法对磷石膏原料、磷建筑石膏粉和石膏产品进行分析和表征。结果表明:在温度为180℃和焙烧时间为2.0 h条件下,磷建筑石膏粉β半水石膏质量分数达到75.24%,绝干抗压强度达到9.6 MPa;建筑石膏强度随着减水剂掺量的增加而升高。聚羧酸减水剂掺量为0.7%时,绝干强度达到15.0 MPa,强度提高近64.84%;FDN减水剂掺量为0.7%时,绝干强度达到14.8 MPa,强度提高近62.64%;木质素减水剂掺量为0.7%时,绝干强度达到13.9 MPa,强度提高近52.75%。  相似文献   

5.
以磷石膏为原料,采用水洗法去除磷石膏中的杂质成分,通过低温煅烧制备建筑石膏,借助于TG-DSC技术研究煅烧温度、煅烧时间对石膏强度及三相组分含量的影响,然后考察缓凝剂三聚磷酸钠、增强剂粉煤灰、减水剂三聚氰胺及聚丙烯纤维等添加剂对石膏试块物化性能的影响。结果表明:在170℃、3 h低温煅烧条件下所制备的建筑石膏粉β-CaSO4·0.5H2O质量分数为72.23%,石膏试块力学性能优于GB/T 9776—2008《建筑石膏》中2.0级产品的要求;采用添加量为0.15%(质量分数,下同)的三聚磷酸钠作缓凝剂、添加量为5.00%的粉煤灰作增强剂、添加量为0.05%的三聚氰胺作减水剂及添加量为1.00%的聚丙烯纤维对建筑石膏粉改性处理,所制备的石膏试块7 d干抗折强度为4.17 MPa,干抗压强度为12.97 MPa。探讨了以磷石膏为原料制备建筑石膏粉中多种添加剂的作用,制备出具有良好性能的建筑石膏粉,为磷石膏综合利用提供技术方法和理论依据。  相似文献   

6.
以磷建筑石膏为胶凝材料,研究砌块基础配比、发泡剂稳定性和掺量、无机胶凝材料和复合外加剂掺量等制备因素对实心砌块表观密度和物理性能的影响.研究结果表明,在磷建筑石膏与粉煤灰质量比9∶1、石灰1.0%、泡沫液500 mL以及水灰比0.5条件下,制得磷建筑石膏实心砌块表观密度785 kg/m3、抗压强度4.04 MPa、软化系数0.35.砌块表观密度及强度分别达到JC/T 1062-2007《泡沫混凝土砌块》中B08密度等级(≤830 kg/m3)及A3.5强度等级(≥3.5 MPa)的要求.  相似文献   

7.
《云南化工》2015,(3):24-27
研究了磷石膏制备建筑石膏粉的工艺条件,通过添加减水剂改善磷建筑石膏粉的力学性能。采用常规分析方法、XRD和扫描电镜等方法对磷石膏原料,磷建筑石膏粉进行分析和表征。结果表明:磷石膏为片状结晶体,含有少量石英颗粒;在温度180℃和焙烧时间2.0 h条件下,半水石膏含量达到76.6%;磷建筑石膏粉强度随着减水剂掺量的增加而升高,聚羧酸减水剂掺量0.7%时,抗折强度达到15.0 MPa,强度提高近64.84%;FDN减水剂掺量0.7%时,抗折强度达到14.8 MPa,强度提高近62.64%。  相似文献   

8.
王宇斌  文堪  王森  汪潇  杨留栓 《硅酸盐通报》2018,37(12):3996-4000
以脱硫建筑石膏、水泥、矿渣、中和渣及硫酸钙晶须为原料制备石膏实心砌块,为优化工艺条件并提高砌块后期强度,研究采用正交实验方法进行试验,结果表明,影响石膏砌块28 d抗压强度的显著因素为晶须掺量、缓凝剂掺量和中和渣掺量,而水泥与矿渣配比和减水剂掺量为不显著影响因素.优化后的条件为:中和渣掺量为5.00%,硫酸钙晶须掺量为7.00%,水泥与矿渣配比为5:15,减水剂掺量为0.80%,缓凝剂掺量为0.06%,在此条件下可获得28 d抗折强度为7.74 MPa、抗压强度为31.10 MPa、软化系数为0.60的石膏实心砌块,且该砌块力学性能明显强于纯脱硫石膏砌块.研究对实现固废资源的综合利用及制备高质量的石膏砌块具有重要参考价值.  相似文献   

9.
以α高强石膏、植物蛋白类发泡剂、蛋白类石膏缓凝剂为原料,采用物理发泡方法制备石膏基保温板,探索发泡剂浓度、缓凝剂掺入量、水膏质量比对保温板干密度、流动度、力学强度和导热系数的影响。通过响应曲面实验设计,建立回归模型。结果表明,石膏基保温板制备的最佳工艺条件为发泡剂与水质量体积比1/247.55 g/mL、水膏质量比42.53%、缓凝剂掺入量0.023%,实验所得石膏基保温板干密度为503.19 kg/m3,抗压强度为2.12 MPa,导热系数为0.119 W/(m·K),与模型预测值接近。  相似文献   

10.
发泡混凝土是以水泥为主要胶凝材料,基于双氧水发泡工艺制成的一类轻质多孔的保温材料。试验研究水温、粉煤灰掺量、稳泡剂掺量和发泡剂掺量四个因素分别对发泡混凝土制备的影响。结果表明:适宜制备工艺的搅拌水温为32℃左右;粉煤灰的最佳掺量为胶凝材料总量的40%;稳泡剂掺量为1%;基于成本、发泡效果以及试块的成型效果,发泡剂掺量为3%和3.5%。  相似文献   

11.
采用注塑法制备了PP微泡材料,并研究了发泡剂种类和用量对性能的影响。结果表明:新型发泡剂RS3000发泡效果明显优于AC和NaHCO3;随着发泡剂用量的增加,拉伸强度和断裂伸长率逐渐降低,冲击强度先增加减小,密度则是先降低后增加;当发泡剂RS3000用量为0.5份时,性能最佳:拉伸强度20.4MPa、断裂伸长率564%、冲击强度50.6kJ/m2、密度0.879g/cm3。  相似文献   

12.
依据热平衡发泡原理,选择NaHCO3、偶氮二甲酰胺(AC)、偶氮二异丁腈和4,4-氧代双苯磺酰肼组成不同热平衡复合发泡剂发泡不饱和聚酯树脂,通过示差扫描量热仪(DSC)、扫描电镜(SEM)和力学性能测试对其发泡机制进行了研究。结果表明:先吸热后放热的热平衡复合发泡剂发泡材料泡孔孔径小且分布均匀。AC与NaHCO3质量比为6∶4组成的热平衡发泡剂制得的发泡不饱和聚酯树脂的表观密度为0.546 g/cm3,压缩强度为13.73 MPa,比压缩强度达到25.15 MPa/(g.cm-3)。  相似文献   

13.
以煤粉炉渣为主要原料,以碳酸钙作为发泡剂,磷酸钠作为稳泡剂,再加入其他辅助原料制备了微晶泡沫玻璃,研究了碳酸钙和磷酸钠的掺入量、发泡温度、保温时间对微晶泡沫玻璃性能的影响,并且采用XRD分析其物相组成,结果表明,当发泡剂和稳泡剂的掺量分别为4.5%和5%,发泡温度为1000℃,发泡时间为20min时,试样已经完全转化为微晶泡沫玻璃,主晶相为硅灰石,次晶相为钙长石和辉石,平均泡径达2.03mm,表观密度为938 kg/m3,气孔率达52.6%,抗压强度达17.95MPa,抗弯强度达12.51 Mpa,热膨胀系数达5.67×10-6/℃,导热系数达0.20 W/(m.K)。  相似文献   

14.
以甘油为增塑剂,偶氮二甲酰胺为发泡剂(AC发泡剂),采用模压法制备聚乳酸/淀粉发泡片材。通过对材料的力学性能,发泡密度、发泡倍率等测试研究了发泡剂含量、发泡温度、发泡时间及发泡压力对片材性能的影响。结果表明,发泡温度、发泡时间及发泡压力对片材的力学性能影响较大,AC发泡剂对材料发泡性能影响显著。当AC发泡剂用量为0.6份,发泡温度为200℃,发泡时间为4 min,压力为10 MPa时片材的拉伸强度达到27.91 MPa,断裂伸长率为3.65%,此时材料的发泡密度为1.08 g/cm3,发泡倍率为1.16,综合性能最佳。  相似文献   

15.
以偶氮二甲酰胺(AC发泡剂)、Zn O和Na HCO3复合体系作为发泡剂,采用模压发泡的方法制备高填充粉煤灰聚氯乙烯(PVC)复合发泡板材,确定复合发泡剂的最优配比及其在复合发泡板材中的最佳用量,并对其性能进行了研究。采用发气量测定、热重/差示扫描量热(TG/DSC)分析对AC发泡剂进行了改性研究,选出分解温度满足加工条件的复合发泡剂。添加不同份数的复合发泡剂制备PVC复合发泡板材,用扫描电子显微镜(SEM)分析其断面,测试板材的冲击强度及弯曲强度。实验结果表明,当AC发泡剂、Zn O和Na HCO3的配比为2∶1∶1.5时,最大发气量为213 m L/g,分解温度区间为165~177℃,满足PVC发泡板材加工。当复合发泡剂添加量为6份时,力学性能达到最佳,弯曲强度为17.63 MPa,冲击强度为21.88 k J/m2,达到国家硬质聚氯乙烯低发泡板材的标准;粉煤灰填充量高达61.16%。  相似文献   

16.
通过分析磷石膏蒸压后样品的物相组成、相对结晶度、烘干抗压强度、微观形貌,研究了蒸压温度、保温时间、液固比、杂质等因素对磷石膏蒸压制备α-半水石膏的影响。结果表明:磷石膏蒸压后所得样品的烘干抗压强度与α-半水石膏晶体的相对结晶度呈正相关关系;在蒸压温度为130 ℃、保温时间为3~5 h、液固质量比为0.25条件下,所得α-半水石膏的相对结晶度高、烘干抗压强度大、晶体微观形貌完整且长径比小;磷石膏中的杂质会对蒸压样品的力学强度产生影响,将磷石膏水洗处理后,在蒸压温度为130 ℃、保温时间为3 h、液固质量比为0.25条件下,可制得2 h抗折强度为7.3 MPa、烘干抗压强度为32.8 MPa的α-半水石膏,该α-半水石膏符合JC/T 2038—2010《α型高强石膏》α30强度等级的要求。  相似文献   

17.
磷石膏胶凝活性差,阻碍了它在建材领域的大宗消纳。本文通过研究碱激发预处理后磷石膏物相和微观结构,以及用其制备高掺量免烧建材的抗压强度、物相和微观结构,从而获得磷石膏制备高掺量、高抗压强度免烧建材的工艺参数。结果表明:100 g磷石膏,碱激发剂为100 mL,在室温下预处理24 h后,磷石膏主晶相CaSO4·2H2O的晶粒变小,结晶度降低,通过观察微观结构发现硫酸钙颗粒变大,细小颗粒量大幅降低,从而提高了其胶凝活性。当磷石膏掺入量为80%(质量分数)时,与未处理磷石膏相比,所制备的免烧建材保养7 d、28 d和浸水后的抗压强度均明显提高,分别为13.79 MPa、18.22 MPa和11.44 MPa,其微观形貌显示硫酸钙颗粒间没明显边界,几乎融为一体,致密度极高,对材料强度的增加十分有利。  相似文献   

18.
本文通过熔融共混制得了EPDM/LDPE热塑性弹性体,压制标准试样,然后使用超临界二氧化碳作为发泡剂在高压反应釜中进行物理发泡。通过万能拉力机测试了弹性体力学性能,用扫描电镜观察了拉伸断面和泡孔的微观结构。结果表明:DCP硫化体系的热塑性弹性体的综合力学性能要优于硫黄硫化体系,随着硫化剂用量的增多,拉伸强度和撕裂强度有一个最大值,硬度上升;橡塑比在4:6时,力学性能达到最佳,最大拉伸强度为7.5MPa,最大撕裂强度为27.6MPa。扫描电镜观察其拉伸断面形貌,表明EPDM橡胶相与LDPE塑料相呈现“海-岛”两相微观结构;泡孔大小均匀性较好,成功制备了微米级微孔泡沫且泡孔大小分布均匀。  相似文献   

19.
采用石灰中和改性二水磷石膏,再添加水泥、机制砂及增塑剂制备水泥基湿拌抹灰砂浆,分析了磷石膏、水泥及增塑剂不同掺量下湿拌砂浆的凝结时间、稠度以及力学强度等物理性能,并采用X射线衍射(XRD)及扫描电镜(SEM)分析了磷石膏在湿拌砂浆中的作用机理。结果表明,随着磷石膏用量增加,湿拌砂浆的凝结时间延长,28 d抗压强度及14 d拉伸黏结强度降低;随着水泥用量增加,砂浆的凝结时间缩短,强度逐渐增大;随着增塑剂用量的增加,砂浆的黏结性能及润滑性能逐步优异,凝结时间逐渐增加。当控制材料掺量比例(质量分数)磷石膏为35%、机制砂为48%、水泥为17%、外掺石灰为2%、增塑剂为0.3%时,砂浆的凝结时间为25 h,28 d抗压强度为6.2 MPa,14 d拉伸黏结强度为0.31 MPa,均符合行业标准JC/T 230—2007《预拌砂浆》中WP M5质量技术指标要求。磷石膏在水泥基湿拌砂浆中的主要作用是参与反应的磷石膏提供硫酸根并与水化铝酸钙反应生成钙矾石,形成提高砂浆强度的矿物起胶结作用,未反应的磷石膏作为细集料起填充作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号