首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
以NaCl为造孔剂,在粉末压制压力为600 MPa、烧结温度600℃保温3 h、801℃保温1 h、1 000℃保温1 h的工艺条件下,用元素粉末法制备多孔Ni3Al金属间化合物。研究造孔剂添加量与多孔Ni3Al金属间化合物的孔隙度之间的关系,推导出孔隙度与造孔剂添加量之间的数学关系,在该特定的工艺条件下,Ni3Al的孔隙度θ与NaCl的添加量w之间的关系为1/(1-θ)=1.260 8+3.9235 8[w/(1-w)]。  相似文献   

2.
用粉末烧结法制备了孔结构为球形中空孔和线型中空孔的镍基多孔高温合金材料.对试样进行显微组织观察和力学性能测试.结果表明:制备的多孔高温合金材料的孔隙分布均匀,孔径大小一致.通过高温烧结,多孔合金骨架处的金属颗粒之间形成了烧结颈,发生了烧结结合.生成孔的孔隙度随造孔剂(尿素)的添加量增加而增加,当造孔剂的质量分数为40%时,可得到孔隙度为81.62%的球形多孔材料.多孔材料具有优良的能量吸收性能,其压缩性能随孔隙度和孔径的增加而下降.  相似文献   

3.
以羰基镍粉为原料,选用聚甲基丙烯酸甲酯(PMMA)作为造孔剂,采用粉末冶金方法制备孔结构和孔隙可控的多孔镍毛细芯。采用X射线衍射仪、扫描电镜和力学性能测试等检测手段对多孔镍的物相组成、孔隙特征和力学性能进行检测和分析。研究烧结温度、造孔剂PMMA含量和粒径对多孔镍的孔结构和力学性能的影响。结果表明,随烧结温度升高,多孔镍孔隙率减小,孔径变小,力学性能升高;随造孔剂PMMA含量和粉末粒径增大,孔隙率增加,孔径增大,力学性能下降。在烧结温度为800℃,PMMA体积分数为80%、粉末粒径为5μm条件下制备的多孔镍综合性能最佳,孔隙率为71.9%,平均孔径为2.37μm,抗弯强度和抗压强度分别为25.3 MPa和8.7 MPa。  相似文献   

4.
以Na Cl为造孔剂,采用粉末冶金法制备具有高孔隙率的铜基多孔毛细芯材料,研究造孔剂粉末含量及粒度对毛细芯材料孔隙率、孔隙微观结构、等效孔径大小、渗透性能及抽吸性能的影响,并讨论孔隙结构、等效孔径及性能的关系。研究结果表明:随造孔剂含量增加,材料的孔隙率明显上升,材料内部的预制孔洞数量显著增加,使得许多预制孔洞相互贯通;减小造孔剂粒度会小幅度降低材料的孔隙率,同时使材料内部预制孔洞尺寸明显变小且分布趋向于均匀;毛细芯材料内部的间隙孔洞和预制孔洞可以组成不同类型的孔道,等效孔径大小与材料内部孔道结构及数量密切相关;通过改变造孔剂的含量和粒度,产生不同孔隙结构,可调控材料的等效孔径大小及分布;毛细芯的渗透性能及抽吸性能不仅仅由孔隙率决定,也与材料的孔结构、孔径大小及分布密切相关;孔隙率越高、平均等效孔径越小且孔径分布越集中的毛细芯,其毛细抽吸性能越好。  相似文献   

5.
采用粉末冶金法中的添加造孔剂法制备多孔铝材料,其中铝粉与造孔剂的原料比例为7∶3。选择NH_4HCO_3和NaCl作为造孔剂,并在四个不同烧结温度下高真空烧结制得多孔铝材料。添加不同含量的氟化镧和氧化铈,探究其对多孔铝的影响。结果表明,烧结温度为600℃时能够获得具有较好晶粒组织的多孔铝。LaF_3添加含量在0.5%(质量分数)时,多孔铝材料的抗压强度可达52.4 MPa,其弹性模量可达1.56 GPa。当CeO_2添加量达到1%(质量分数)时,多孔铝的抗压强度和弹性模量达到最好,分别为45 MPa和1.25 GPa。  相似文献   

6.
粉末烧结法制备开孔泡沫铝压缩性能的研究   总被引:1,自引:0,他引:1  
采用粉末烧结工艺制备开孔泡沫铝并研究了其压缩性能,不同形态的尿素和氯化钠颗粒作为造孔剂使泡沫铝的孔隙度控制在70%。结果表明:粉末烧结法制备的泡沫铝呵以容易地控制孔隙度及孔径的大小,并且孔结构很好地保持了造孔剂的形状。不同的孔结构对泡沫铝的压缩性能具有显著影响,球形孔结构得到了最佳的压缩效果。  相似文献   

7.
粉末冶金法制备医用多孔钛的研究   总被引:1,自引:0,他引:1  
本文以碳酸氢铵做造孔剂,采用粉末冶金法制备出多孔钛.研究了烧结温度对多孔钛显微形貌、显气孔率、抗压强度的影响.研究表明,提高烧结温度,有利于Ti晶体的发育,并提高制品的抗压强度.系统研究了碳酸氢铵加入量对多孔钛显气孔率的定量影响.在同一烧结温度下,随着造孔剂含量的增加,试样的显气孔率提高;添加相同含量的造孔剂,随着烧结温度的提高,试样的显气孔率降低.提出将坯体烧结过程中的收缩看作碳酸氢铵留下孔的收缩和钛粉收缩的观点,得出显气孔率的倒数和钛与碳酸氢铵质量分数成一次函数关系的结论.  相似文献   

8.
弥散强化Cu是一种广泛应用于汽车和电子行业的高强高导Cu基复合材料。本文采用机械合金化法制备了Al2O3颗粒弥散强化Cu合金,并对比研究了微量Ag、Ni、Zr、Hf和Ti合金元素对Cu-1.20%Al2O3弥散强化Cu合金微观组织和硬度的影响。XRD结果表明高能球磨能有效地固溶Al2O3弥散相到Cu基体中;硬度测试表明添加Ag元素能显著地提高弥散强化Cu的维氏硬度,添加Ni和Hf元素仅在一定程度上改善弥散强化Cu的维氏硬度,而添加Zr和Ti元素则对提高弥散强化Cu的硬度作用不大;SEM表征结果显示有Ag掺杂的弥散强化Cu合金中的Al2O3弥散相粒径明显小于未掺杂Ag的情况。弥散强化Cu硬度的提高与Ag在Cu与Al2O3相界面的偏聚进而有效抑制弥散Al2O3颗粒长大紧密相关。  相似文献   

9.
利用粉末注射成形工艺制备了TiNi多孔材料,研究了注射喂料的流变性能,造孔剂NaCl对多孔材料性能的影响。试验结果表明:喂料的流变性能良好;造孔剂可以显著提高材料的孔隙度、孔径;能谱分析和X射线物相分析没有发现NaCl残留,TiNi多孔材料主要由Ni3Ti、Ti2Ni、TiNi、TiC相组成。  相似文献   

10.
《稀土》2017,(4)
采用添加造孔剂法制备多孔钛,并且加入微量氟化镧以期得到高孔隙率高强度的多孔钛。选取三种不同粒径的钛粉做为原料,分别制备多孔钛,并且加入氟化镧探究其对多孔钛的影响效果。随着钛粉粒径的减小,多孔钛的开孔率、孔隙率随着下降,孔径尺寸略有减小;且多孔钛的抗压强度、弹性模量和抗弯强度随之增强,但不同粒径的多孔钛,氟化镧的增加效果不同,而细化晶粒是氟化镧能增强多孔钛力学性能的原因。综合考虑,C组(粒径最小)制备所得的多孔钛力学性能最佳,其中氟化镧的添加量为0.3%(质量分数)时抗压强度、弹性模量分别为157.84 MPa和3.73 GPa,抗弯强度为66.62 MPa。  相似文献   

11.
采用电脱氧法,以Nb2O5烧结片为阴极插入高温熔融CaCl2-NaCl混合熔盐中电解制备金属铌。研究了不同烧结温度对阴极片的孔隙度、电脱氧反应及其产物的影响。采用XRD、SEM、EDS对电解产物的物相、表面形貌和含氧量进行分析。实验结果表明,烧结温度是影响Nb2O5烧结片的晶粒尺寸、孔隙度和孔隙尺寸的主要因素。阴极片开孔孔隙有利于熔盐的渗入,能够扩大反应界面,加快电脱氧反应速率。电脱氧效果不仅取决于开孔孔隙度,也与孔隙尺寸有关,实验表明1 200℃烧结12 h制备的Nb2O5阴极片电解产物脱氧效果最好。  相似文献   

12.
以萘为造孔剂, 采用放电等离子烧结技术(spark plasma sintering, SPS)制备多孔镁块体材料。结果表明, 采用放电等离子烧结技术在470℃时可以制备出结构与尺寸可控性好、开孔率与孔隙率(44.25%)较高、粉体颗粒无明显长大的多孔金属镁块体材料。升华性造孔剂可对孔隙体积进行有效调节, 实现多孔镁材料体内小孔与大孔的合理搭配, 进一步改善多孔镁材料孔隙之间的连通性。将升华性造孔剂与放电等离子烧结技术相结合后, 对于开孔性与颗粒连接性要求较高的多孔金属材料制备具有技术优势, 并对解决传统造孔剂法制备生物多孔金属材料所面临的二次污染问题具有很好的借鉴意义。  相似文献   

13.
采用电脱氧法,以Nb2O5烧结片为阴极,石墨棒为阳极,在CaCl2-NaCl混合熔盐中制备金属铌.分别研究了压制压力、烧结温度对阴极片微观结构和电脱氧反应及其产物的影响.实验结果表明,烧结温度和压制压力对Nb2O5烧结片的晶粒尺寸、孔隙度和孔隙尺寸具有明显的影响,从而影响到电脱氧的反应速率和效果.晶粒细、孔隙度高和连通性好的烧结氧化铌阴极能够提高电脱氧的反应速率和效果.研究表明,12MPa压制成型后经1 200℃烧结的阴极片,电脱氧效果最佳.  相似文献   

14.
The effect of the fineness of atomized nonspherical bronze powder and compaction pressure on the porosity and pore size of sintered materials is studied. The optimum sintering temperature for achieving the maximum strength and porosity of bronze carcasses is determined. The effect of bronze original porosity and powder particle size on the wear resistance and friction coefficient of sintered carcasses impregnated with polymer and oil under dry friction conditions and a self-lubricating regime is established.  相似文献   

15.
通过选用气雾化及水雾化两种工艺方法制备的不锈钢粉末来制取粉末烧结多孔材料。探讨了粉末形状及松装密度对不锈钢粉末烧结多孔材料制造工艺中的成形压力和烧结温度等工艺参数的影响;研究了原料粉末松装密度对不锈钢粉末烧结多孔材料的透气性、拉伸强度的影响。结果表明:成形压力、烧结温度和制品的透气性受粉末松装密度影响显著。粒度范围为0.18~0.90mm时,气雾化粉末的成形压力比水雾化粉末要高近1倍;当粉末的粒度相同时,采用松装密度大的球形粉末所需的烧结温度比松装密度小的不规则粉末的高60~70℃;粒度为0.45~0.60mm时,选用松装密度为4.13 g/cm3粉末所制备的多孔制品的透气性为3.16×10-10m2,而选用松装密度为2.67 g/cm3的粉末所制备的多孔制品的透气性仅为8.8×10-11m2。不锈钢多孔材料的强度受原料粉末的松装密度影响显著;粒度相同,制备工艺相同时,采用较低松装密度的粉末的制品,能够得到较高的强度。  相似文献   

16.
研究热导管铜粉的松装密度、粉末粒度、粉末粒径分布对铜粉烧结的毛细结构体断裂强度、孔隙率、毛细力吸水通量的影响。结果表明:在烧结温度为980℃,烧结时间60 min的条件下松装烧结所得铜热导管毛细结构体综合性能良好,当铜粉松装密度2.1 g/cm~3,粒径范围100~250μm,其中粒径150~250μm的质量分数为40%~70%时,铜粉烧结毛细结构体的断裂强度为9.11~9.67 MPa,孔隙率52.6%~53.8%,毛细力吸水通量1.30×10~(-3)~1.42×10~(-3) g/(s·mm~2)。  相似文献   

17.
The morphology of the surface and fracture of highly porous materials obtained during the thermal destruction of metalorganic mixtures (MOM) was investigated. The size and shape of pore channels in the finished product were shown to be determined through the fractional composition and the particle shape in MOMs. The effect of the porosity on the permeability and strength of sintered materials was considered. The permeability was demonstrated to depend not only on the value, but also on the shape of pore channels. Combining the techniques of powder metallurgy with chemical-metallurgical processes allows us to obtain materials with a porosity of 70–80% and a strength of no less than 5–25 MPa. If the pore size was from 10 to 100 μm, the permeability of materials was (in 10−12 m2) 1–3 for Mo, 0.5–6 for Mo-Ni, and 2–6 for Ti-Mo.  相似文献   

18.
摘要:针对钢铁企业大气污染物排放问题,生态环境部提出了NOx、SO2、烟气颗粒物等超低排放的要求,京津冀地区在此基础上对烧结工序的CO排放浓度也做了相应要求。为探究不同粒度焦粉对烧结烟气中CO排放的影响,进行烧结杯实验,使用紫外差分烟气分析仪实时测定烧结烟气中CO浓度,并测定烧结矿的性能指标。结果表明:焦粉粒径小于1mm时,生料层透气性差,焦粉燃烧不完全,CO排放量大,随着焦粉粒径增大,制粒得到强化,生料层透气性、氧化性气氛得到改善,在焦粉粒径达到3~4mm时达到最佳,较小于1mm降低约41%;随着粒径增大,烧结矿强度、成品率均有所增加,冶金性能得到改善,在焦粉粒径达到2~3mm时,综合性能达到最优。  相似文献   

19.
添加氯化钠作为造孔剂,采用粉末冶金方法制备高孔隙率小孔径多孔镍。对多孔镍的孔隙特征、力学性能进行了研究。结果表明:通过调整造孔剂比例、烧结温度及冷却时间工艺参数,可以制备出孔隙率为60.84%~64.92%,平均孔径为0.20~8.80μm,小于20μm孔径占比为92.0%~96.1%,压缩屈服强度为8.9~13.4 MPa的多孔镍;随着烧结后冷却时间的增加,平均孔径减小,压缩强度呈增加趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号