首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用挤出熔融浸渍工艺制备了长度为12 mm的长玻璃纤维(LGF)增强聚丙烯(PP)粒料(LGF质量分数30%),然后经注塑制备了PP/LGF复合材料试样。首先对现有注塑机的喷嘴和止逆装置进行了优化,发现优化后LGF在试样中的三维骨架结构保持性更好,试样的力学性能得到大幅提高。针对注塑机结构优化后剪切分散能力减弱的问题,且为提高LGF在PP中的分散性,在挤出过程中使用张紧轮对LGF施加预张力,发现施加适当的预张力提高了LGF在PP中的分散性,进一步提高了试样的力学性能,但提高的幅度较小。在此基础上,研究了注塑时不同螺杆转速对LGF在试样中的长度分布、平均长度、分散性、三维骨架结构和试样力学性能的影响。结果表明,虽然在较低的螺杆转速下,LGF长度分布相对均匀,保持了较高的平均长度和较好的三维骨架结构,但分散性较差,试样力学性能较低;适当提高螺杆转速可提高LGF的分散性,并能保持一定的三维骨架结构,从而提高试样的力学性能。  相似文献   

2.
《塑料科技》2017,(10):35-38
通过熔体浸渍法制备了一定玻纤含量的长玻纤增强聚丙烯(PP/LGF)母粒,然后将一定配比的母粒与PP通过注射机注塑成样条,研究了LGF用量及相容剂、增韧剂的添加对PP/LGF复合材料力学性能的影响。结果表明:当LGF用量为35%左右时,PP/LGF复合材料的力学性能达到最佳,较之纯PP显著提升。相容剂的加入改善了PP/LGF复合材料的力学性能,并且提高了LGF和PP之间的黏结力。增韧剂的加入使得复合材料的拉伸强度、弯曲强度和弯曲模量呈现下降的趋势,冲击强度则随增韧剂用量的增加逐渐提升。  相似文献   

3.
将熔融浸渍制备的长玻璃纤维(LGF)增强聚丙烯(PP)与PP按照不同比例熔融共混,制备了不同LGF含量的LGF增强PP复合材料。研究了老化时间、LGF含量对LGF增强PP复合材料力学性能的影响。结果表明:随着LGF含量的增加,LGF增强PP复合材料的断裂伸长率稍有下降,拉伸强度、弯曲强度、弯曲模量、冲击强度及缺口冲击强度都显著提高。老化时间的延长,对低LGF含量的LGF增强PP复合材料的力学性能影响不大;老化时间较长时,高LGF含量的LGF增强PP复合材料的总体力学性能有所下降。  相似文献   

4.
长玻璃纤维增强热塑性复合材料研究   总被引:1,自引:0,他引:1  
分别制备了长玻璃纤维(LGF)、短玻璃纤维(SGF)增强聚苯硫醚(PPS)、聚酰胺(PA)6复合材料,研究了基体树脂粘度、口模类型、GF类型及喂料速度对复合材料力学性能、热性能的影响,利用扫描电子显微镜观察了注塑试样断面形貌及LGF在树脂基体中的分布状态.结果表明,基体树脂的粘度越大,对复合材料的力学性能影响越大;在相同GF含量下,LGF增强PPS、PA6复合材料的热变形温度普遍高于SGF增强PPS、PA6复合材料;LGF增强复合材料抵御裂纹开裂的能力提高.  相似文献   

5.
通过开炼–模压成型工艺方法,制备了长玻璃纤维(LGF)增强聚丙烯(PP)复合材料,首先研究了β成核剂对纯PP力学性能和结晶性能的影响,在此基础上研究了LGF对PP/LGF复合材料力学、结晶性能及热稳定性的影响,最后探讨了增容剂马来酸酐接枝三元乙丙橡胶(EPDM-g-MAH)对复合材料力学性能的影响。结果表明,β成核剂可以改善PP的冲击韧性,但降低了PP的拉伸和弯曲强度,当β成核剂质量分数为0.2%时,PP的综合性能最好;随LGF含量增加,PP/LGF复合材料的拉伸、弯曲和冲击强度及结晶度总体上呈先增大后减小的趋势,不同LGF含量下的复合材料起始热分解温度均在390℃以上,当LGF质量分数为20%时,复合材料的综合性能最好;少量的EPDM-g-MAH能改善LGF与PP基体的界面相容性,大幅增强了复合材料的韧性,其最适宜的质量分数为10%。  相似文献   

6.
采用熔融共混法制备了聚酰胺6/苯乙烯-马来酸酐共聚物/长玻璃纤维(PA6/SMA/LGF)复合材料,利用差示扫描量热法(DSC)、热重分析(TGA)、热变形温度及力学性能测试等手段研究了LGF含量对PA6/SMA/LGF复合材料熔融结晶行为、热性能及力学性能的影响。结果表明:随着LGF含量的增加,PA6/SMA/LGF复合材料的结晶温度、结晶度以及熔融焓均先升高再降低,而且复合材料的最大分解温度较纯PA6显著提高;另外,随着LGF含量的增加,PA6/SMA/LGF复合材料的热性能及力学性能均明显改善,其中当LGF含量为27%时,复合材料的热变形温度、弯曲强度、弯曲模量、拉伸强度和冲击强度分别增至206.0℃、227.8 MPa、7 335 MPa、180.6 MPa和18.7 kJ/m2。  相似文献   

7.
采用熔融共混工艺和熔融浸渍分别制备了短玻璃纤维增强聚苯硫醚复合材料(PPS/SGF)和长玻璃纤维增强聚苯硫醚(PPS/LGF)复合材料,并对复合材料的力学性能和耐热性能进行了对比分析。研究结果表明,在玻璃纤维质量分数为30%时,PPS/SGF和PPS/LGF复合材料的拉伸强度分别为110 MPa和122 MPa;弯曲强度分别为175 MPa和208 MPa;弯曲弹性模量分别为8 GPa和9 GPa;缺口冲击强度和无缺口冲击强度分别为7.7,11.9 kJ/m2和31,37 kJ/m2。PPS/LGF复合材料的拉伸强度、弯曲强度、弯曲弹性模量、缺口冲击强度和无缺口冲击强度相较于PPS/SGF复合材料分别提高了11.0%,18.9%,11.3%,54.5%和19.4%。PPS/SGF和PPS/LGF复合材料的热变形温度分别达到250℃和275℃,PPS/LGF复合材料的热变形温度高于PPS/SGF复合材料热变形温度10%。  相似文献   

8.
采用剑麻纤维(SF)和长玻璃纤维(LGF)混杂增强聚丙烯(PP)复合材料,考察了SF/LGF的比例和含量对PP复合材料力学性能的影响。结果表明:SF/LGF在聚丙烯树脂基体中呈交叉网状分布,这有利于提高复合材料的冲击强度、弯曲模量、拉伸强度和软化点。在SF/LGF质量比为2 2∶,二者总质量分数为30%时,SF/LGF混杂增强PP复合材料的综合力学性能较好。  相似文献   

9.
用熔融共混法制备了膨胀阻燃剂填充长玻纤增强聚丙烯(PP/LGF)复合材料,并采用热烘箱老化法,研究了140℃条件下不同热氧老化时间对复合材料热氧老化性能的影响。通过热分析、锥形量热、极限氧指数、垂直燃烧测试对其热解和燃烧性能进行了研究。结果表明,随着老化时间的延长,PP/LGF复合材料的极限氧指数值明显提高,且垂直燃烧等级基本保持不变;并且复合材料的热释放速率峰值、热释放速率平均值和总热释放速率值不断增大。热氧老化对PP/LGF复合材料的最大热失重速率所对应的温度无太大影响,但却显著降低了复合材料的起始分解温度。  相似文献   

10.
采用熔融共混制备了碱式硫酸镁晶须/聚丙烯(MOSw/PP)复合材料。通过力学性能、微观结构等分析MOSw喂料方式和挤出机螺杆转速对材料性能的影响。结果表明,MOSw侧喂比主喂制备的复合材料冲击强度更高;少量MOSw和高螺杆转速有助于POE分散; MOSw可显著增加PP的热变形温度(HDT),添加30%MOSw时材料的HDT达137℃,提高了46℃。添加18%MOSw可制得增韧增刚的高流动性复合材料。对于高强脆性的MOSw,在确保分散时,选择侧喂方式和低螺杆转速有助于制备更高性能的MOSw/PP复合材料。  相似文献   

11.
Die swell of PP and glass fiber reinforced PP (GFRPP) through an extruder was investigated. It was observed that the die swell decreased as (1) the temperature increased, (2) the fiber content increased, and (3) the screw speed was lowered. Fiber length distribution in GFRPP was measured. The average fiber length would increase as (1) the fiber content decreased, (2) the temperature increased, and (3) the screw speed was around 25 rpm. The crystallinity of extrudate was measured by DSC and found to be independent of the screw speed and the fiber content.  相似文献   

12.
Long glass fiber‐reinforced polypropylene composites were prepared using self‐designed impregnation device. Effects of the different injection temperature on mechanical properties, crystallization, thermal, and dynamic mechanical properties of long glass fiber‐reinforced polypropylene composites were discussed. The differential scanning calorimetry (DSC) results indicate that the melting peak temperature of PP/LGF composites gradually reduced, however, the crystallinity of PP/LGF composites gradually increased with increasing injection temperature. Thermo‐gravimetric analyzer (TGA) results demonstrate that with increasing injection temperature, the temperature of the PP/LGF composites melt increased, the viscosity of the PP/LGF composites melt lowered, the mold filling of the PP/LGF composites melt was easy, the shear force of glass fiber was relatively low, which made the residual length of glass fiber in products increase. Dynamic thermal mechanical analyzer (DMA) results show that the storage modulus of PP/LGF composites is the highest while the injection temperature is at 290°C, and the peak value of tan σ of PP /LGF composites at 290°C is minimal, which indicates that the mechanical properties of PP /LGF composites at 290°C is the best. What' more, the injection temperature at 290°C significantly ameliorated “glass fiber rich skin” of products of glass fiber‐reinforced composites. J. VINYL ADDIT. TECHNOL., 24:233–238, 2018. © 2016 Society of Plastics Engineers  相似文献   

13.
采用熔体浸渍技术制备了长玻璃纤维母料(LGF/PP-g-MAH/PP)增强聚丙烯(PP)复合材料(LGF/PP)。通过双螺杆挤出机制备了同等配比的短玻纤增强聚丙烯(SGF/PP)复合材料。研究了LGF含量、环氧树脂(EP)和固化剂(2E4MZ)对LGF/PP复合材料的力学性能影响。结果表明:当LGF质量分数为35%~40%时,LGF/PP的综合力学性能最好,且明显优于同样组成的SGF/PP复合材料。EP和含固化剂(2E4MZ)的EP对LGF/PP复合材料的力学性能提高有一定的作用。SEM照片分析表明:EP的加入能改善玻纤与聚丙烯基体的界面粘接。  相似文献   

14.
Long glass fiber (LGF)‐reinforced polypropylene (PP) composites were prepared using self‐designed impregnation device. Effects of impregnation time on mechanical properties, crystallization, dynamic mechanical properties, and morphology of PP/LGF composites were investigated. The experiment results demonstrate that the excellent tensile strength, Notched Izod impact strength was 152.9 MPa, 31.2 KJ/m2, respectively, and the stiffness of PP/LGF composites was higher, when the impregnation time was 7.03 s. The excellent interfacial adhesion between PP and glass fiber indicates that PP/LGF composites possess the outstanding mechanical properties. The impregnation time scarcely influenced thermal properties of PP/LGF composites. J. VINYL ADDIT. TECHNOL., 24:174–178, 2018. © 2016 Society of Plastics Engineers  相似文献   

15.
摘要:浮液浸渍玻璃纤维,烘干,熔融状态下拉挤成棒型,切粒,注射成型。研究了玻纤用量对复合材料力学性能的影响。研究结果表明,复合材料的冲击强度、拉伸强度随玻纤用量的增加而提高。悬浮法是较好的制备纤维增强ABS复合材料的方法。  相似文献   

16.
Summary: Long glass fiber reinforced PA6 (LGF/PA6) prepregs were prepared by impregnating PA6 oligomer melt into reinforcing glass fiber followed by subsequent solid‐state polymerization (SSP) to obtain LGF/PA6 composite pellets. A conventional injection‐molding machine suitable for short glass fiber reinforced composites was applied to the processing of the prepared composites, which reduced the fiber length in the final products. Mechanical properties, thermal property, and fiber length distribution of injection molding bars were investigated. Scanning electron microscopy (SEM) was used to observe the impact fracture surfaces and the surfaces of glass fiber after the SSP. It was found that the LGF/PA6 composites were of favorable mechanical properties, especially the impact strength, although the average length of glass fiber was rather short. By this novel process, the content of glass fiber in composite could be high up to 60 wt.‐% and the maximum level of heat distortion temperature (HDT) was close to the melting temperature of PA6. SEM images indicated the favorable interfacial properties between the glass fiber and matrix. The glass fiber surfaces were further observed by SEM after removing the matrix PA6 with a solvent, the results showed that PA6 macromolecules were grafted onto the surface. Furthermore, the grafting amount of PA6 was increased with SSP time.

SEM images of impact fracture surfaces of LGF/PA6 composites (left) and of glass fiber surfaces after removing PA6 with 5 h SSP (right).  相似文献   


17.
制备了长玻璃纤维(LGF)增强聚甲醛(POM)复合材料。通过6因素2水平的正交试验,探讨了注射压力、注射速度、模具温度、保压压力、保压时间、冷却时间等工艺条件对LGF增强POM复合材料的制品表观和拉伸强度的影响。结果表明:注射压力、注射速度、保压时间和模具温度等4个工艺条件对LGF增强POM制品表观和拉伸强度的影响最大,当注塑成型条件分别为料筒温度180190℃、注射压力60 MPa、注射速度60 mm/s、模具温度80℃、保压时间15 s时,制品具有最佳的表观和力学性能。  相似文献   

18.
采用膨胀型阻燃剂(IFR)及协效剂海泡石(SP)对长玻璃纤维增强聚丙烯(PP/LGF)复合材料进行阻燃,通过双螺杆挤出机制备了PP/LGF母粒,IFR母粒和SP母粒,然后将这3种母粒通过注塑机制备了PP/LGF/IFR/SP复合材料,通过极限氧指数(LOI)、垂直燃烧测试、锥形量热仪、热重分析、扫描电子显微镜、力学性能测试等表征PP/LGF各阻燃复合体系的性能。结果表明,当IFR质量分数为22%时,PP/LGF/IFR阻燃复合材料的LOI为28.8%,且垂直燃烧等级达到V–0级;锥形量热仪测试结果表明加入IFR及SP后阻燃复合体系的第一热释放速率峰值降低,而第二热释放速率峰消失;SP质量分数为1%,IFR质量分数为21%的PP/LGF/IFR/SP阻燃复合材料LOI为29.6%,垂直燃烧等级达到V–0级,热释放速率峰值和总热释放量得到有效降低,热稳定性最好,且燃烧时产生致密的炭层覆盖于玻璃纤维表面,同时加入1%SP后复合材料的力学性能下降幅度相对较小。  相似文献   

19.
制备了长玻璃纤维(LGF)和短玻璃纤维(SGF)增强尼龙66(PA66),考察了GF、GF分散剂、耐水解改性剂(MPP)对增强PA66性能的影响。结果表明,选择SGF可获得较好力学性能和表面质量的增强PA66;随着SGF含量的增加,材料的拉伸强度、弯曲强度有大幅度的提高,冲击强度则先升高后降低;GF分散剂的加入改善了材料的表面质量;MPP的加入使材料的耐水解性有明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号