首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A. Simchi   《Materials & Design》2003,24(8):585-594
The role of lubrication procedure on the consolidation behavior of metallic powders and subsequent microstructural development during sintering was investigated. Iron powder and iron–0.8 w/o graphite powder mixture were used as model materials. The effects of die wall lubrication procedure were compared to the traditional admixed powder lubrication method. The influences of manufacturing parameters such as the compacting pressure in the range of 150–800 MPa and the sintering temperature from 400 to 1300 °C were studied. It was found that the lubrication procedure has a great influence on the consolidation and microstructural features of the materials investigated. Admixed lubricant aids the densification in the low-pressure region but limits the maximum density at high pressure. On the other hand, die wall lubrication offers the possibility of achieving the required density in single pressing for parts made by conventional double pressing and double sintering route or by warm compaction technique. The method also results in the formation of more metal/metal contacts during compacting, which leads to better green strength. Moreover, during sintering at moderate temperatures the area of metallic contacts is more and stronger compared to the powder lubricated specimens. Consequently, better mechanical properties are obtained. However, after sintering at a high temperature (>1000 °C) only less total porosity of the unlubricated compacts attributes to higher performance.  相似文献   

2.
Anatase titania nanopowders with mean particle sizes of 7, 15, 26 and 38 nm synthesized by sol–gel method were used to sinter bulk TiO2 nanoceramics. The relative densities and average grain sizes of the TiO2 nanoceramics were studied as a function of the compaction pressure on green sheet, sintering temperature, and mean particle size of the starting TiO2 nanopowders. The relative density of the TiO2 nanoceramics increases rapidly and average grain size increases slowly with increasing sintering temperature below 800 °C. Sintering at higher temperatures above 800 °C enhances the densification of the TiO2 nanoceramics and leads to a increase of the grain size. Bulk TiO2 nanoceramics with an average grain size of less than 60 nm and relative density over 95% was obtained by a phase-transformation-assisted pressureless sintering at a relatively low temperature (800 °C).  相似文献   

3.
Fused deposition of ceramics (FDC) is one of the developing solid freeform fabrication (SFF) techniques. The successful production of high performance ceramics by the FDC process requires that no defects exist in the green parts. However, build defects, such as missing roads, poorly bonded layers or sub-perimeter voids can be encountered in improperly built FDC parts. In this study, a method known as WIP'ing (warm isostatic pressing) was evaluated for its ability to eliminate existing defects in GS44 Si3N4 green FDC parts. Analogous to CIP'ing (cold isostatic pressing), the green FDC parts were rubber bagged and loaded into a pressure chamber filled with water soluble oil at different temperatures, ranging from 30 to 90°C, at pressures of up to 35 MPa. X-Ray radiography results indicated that at temperatures above 70°C, WIP'ing was effective in closing the gaps of the intentionally placed void defects in FDC parts. However, WIP'ing above 70°C was not effective in healing the defects completely. The fracture strengths of FDC parts with intentional added defects, WIP'ed above 70°C were substantially lower than control samples.  相似文献   

4.
The aim of the present work has been to produce high-dense Si3N4 ceramics by a cheaper pressureless sintering method and then to attain vacuum heat treatment to remove residual grain boundary glass in gaseous form. LiAlO2 was used as a sintering additive rather than using Li2O, since its grain boundary glass is not stable above 1200 °C. LiAlO2 was synthesised from 42% Li2CO3 and 58% Al2O3 powder mix reacting together at 1450 °C for 3 h in a muffle furnace. X-ray analysis showed that 95% LiAlO2 was obtained. LiAlO2 was milled and added to silicon nitride powder as a sintering additive. Hot-pressing and pressureless sintering of LiAlO2 containing Si3N4 compacts were carried out at temperatures between 1450–1750 °C. The sintered samples were vacuum heat-treated at elevated temperatures under high vacuum to remove intergranular glass and to increase refractoriness of Si3N4 ceramics. Scanning electron microscope images and weight loss results showed that Li in grain boundary glass (Li–Al–Si–O–N) was successfully volatilised, and oxidation resistance of the sintered samples was increased.  相似文献   

5.
Pure and boron-doped γ-Al2O3 membranes have been synthesized by the sol–gel method. The thermal stability of the unsupported alumina membrane was studied by determining the pore structure (including average pore size, pore volume and BET surface area). The average pore size of the pure alumina membrane increased sharply after sintering at temperatures higher than 1000°C. Addition of 16% boron can considerably stabilize the pore structure of the unsupported alumina membrane. The pore diameter for the B-doped membrane was stabilized within 13 nm after sintering at 1200°C for 5 h. The substantial increase in the pore size for the pure alumina membrane at the sintering temperature of 1000–1200°C was accompanied by the phase transformation from γ-Al2O3 to -Al2O3. The addition of boron can raise the temperature of this phase transformation significantly and, thus, improves the thermal stability of the membranes.  相似文献   

6.
Highly sinterable submicron Pb0.l Ca0.9La2S4(PCLS) powders were prepared by sulfidizing calcium and lanthanum alkoxides al 500°C under CS, atmosphere for 8 hours and then in pure H2S atmosphere at 600-800°C for 8 hours. After sintering the pellets were used as infrared transmitting window material of 8-14 μm wavelength. The CdS was added from 3 to 7 wt.% lo improve the sinterability by forming liquid phase during sintering. For sulfidization of lanthanum alkoxide, sulfide powder with LaS2 phase was formed at 500°C, and a pure Th3P4 phase formed follow by 700°C heat treatment. A powder with β-La2S3phase formed at 800°C, and a pure Th3 P4phase formed follow by 900°C heat treatment. The powder with β-La2S3 phase was sintered to full density at 1350°C by adding 3 wt.% CdS. The PCLS powder with Th3P4 phase sintered to full density at 1400°C by also adding 3 wt.% CdS. The pellet exhibited 45% transmittanceat 13 μm when sintered from the powder with p-La2S3phase. The transmittance at 2.5 μm for the pellet sintered from the PCLS powder with Th3P4 type structure was 3 times higher than that from the p-La2S3 powder.  相似文献   

7.
La0.5Sr0.5CoO3−δ (LSCO) thin films were deposited on yttria stabilized zirconia (YSZ) substrates by pulsed laser deposition (PLD) for application to thin film solid oxide fuel cell electrodes. During the deposition, the substrate temperature was varied from 450 to 750°C, and the oxygen pressure in the chamber was varied from 80 to 310 mTorr. Films deposited at 650°C and an oxygen background pressure of 150 mTorr were mostly (100) oriented. Deposition at higher temperatures or under lower oxygen pressures lead to mostly (110) oriented films. Films with low electrical resistivity of 10−3 Ω·cm were obtained.  相似文献   

8.
The effect of β-spodumene additions on the in situ phase formation and abundances in an Al2O3–Al2TiO5 system in the temperature range 1000–1400 °C has been studied by neutron diffraction and differential thermal analysis. Results show that β-spodumene began to decompose by phase separation and partial melting at 1290 °C, followed by complete melting at 1330 °C. Formation of Al2TiO5 was observed to occur at 1310 °C and its abundance increased with temperature. The addition of β-spodumene as a sintering aid did not cause its reaction with alumina or rutile to form additional phases. Addition of β-spodumene in excess of 5 wt% resulted in pronounced vitrification, which partly recrystallised when cooled to room temperature. The temperatures of Al2TiO5 formation and melting of β-spodumene are consistent with the results of differential thermal analysis.  相似文献   

9.
The mechanically alloyed (Al + 12.5 at.% Cu)3Zr powders were consolidated by cold isostatic pressing (CIP) and subsequent sintering. Effects of CIP pressure and sintering temperature on the stability of metastable L12 phase and nanocrystalline structure were investigated. Before sintering, the powders were CIPed at 138, 207, 276, and 414 MPa. The relative densities of the CIP compacts were not greatly affected by the CIP pressure. However, the L12 phase of the specimen CIPed at pressures greater than 276 MPa was partially transformed into D023. The optimum consolidation conditions for maintaining L12 phase and nanocrystalline microstructure were determined to be CIP at 207 MPa and sintering at 800 °C for 1 h for which the grain size was 34.2 nm and the relative density was 93.8%. Full density specimens could be prepared by sintering above 900 °C, however, these specimens consisted of L12 and D023 phases. The grain sizes of all the specimens were confirmed by TEM and XRD, and were found to be less than 40 nm. This is one of the smallest grain sizes ever reported in trialuminide intermetallic compounds.  相似文献   

10.
Zirconia ceramics, mainly of cubic phase, are used in different applications because of their particular electrical and structural properties.

After the forming stage, sintering leads to a material with suitable microstructural characteristics. The sintering process mainly depends on thermal cycle and on starting particle size and its distribution; it also depends on density and the microstructure of green material. Cubic zirconia has a high (2680 °C) melting temperature; however, effective sintering could be observed for temperatures higher than 900 °C (nanoparticles), and it may reach a final density of 96–98% the theoretical value at relative low temperatures.

The objective of this paper is to study the sintering kinetics of stabilized zirconia in its cubic phase with 8% molar of Y2O3 under fast firing rates up to nearly isothermal conditions. Samples were shaped from suspensions dispersed with ammonium polyacrylate by slip casting. Sintering was performed in the temperature range between 1200 °C and 1400 °C. The sintering kinetic process was followed by measuring density as a function of time. A sintering model was applied to fit the experimental data of the first steps of densification. It was observed that sintering obeys the same mechanism in the temperature and time ranges under study, which results in an activation energy of 170 kJ mol−1. Sintering is controlled by Zr cation diffusion, for which a lattice diffusion coefficient of Dl = 8 × 10−12 cm2 s−1 at 1400 °C was found, and the activation energy of the diffusion process was 223 kJ mol−1.  相似文献   


11.
Photoluminescence spectra of CeBr3 powder compacts with various compaction pressures have been measured under ambient conditions and they are found significantly redshifted compared with those of the original powder by nearly 20 nm (∼1440 cm−1) at the compaction pressure of ∼1.0 GPa. The spectral shift increases extremely rapidly with the compaction pressure and then plateaus at ∼1.0 GPa. The observed residual stress effect of the CeBr3 powder on the luminescence spectra is much larger than that of the EuCl2 powder reported previously. The luminescence peak wavelength of the compact can be easily tuned between 360 and 380 nm by simply changing the compaction pressure applied to the CeBr3 powder. With a very large residual stress effect of the CeBr3 powder on the photoluminescence spectra, this material would make a good pressure-memory material which may be used as a kind of pressure sensor in high-pressure experiments.  相似文献   

12.
A1N powder was shock wave treated under a pressure of 9.8 GPa. X-ray line broadening effect was observed in the shocked powder, which is attributed to the stored strain in the lattice caused by the shock wave treatment. The strain is appreciable and has a value up to about 3 × 10−3 for the (100) plane, which is released during sintering process and provides a driving force for densification. Sintered at 1610 °C for 4 h, the shocked compact doped with additives has a density of about 98% of the theoretical density, while only 80% for the unshocked compact. This suggests that the shock waves have an “active” impact on the A1N powder and make it possible for low-temperature sintering.  相似文献   

13.
The microwave dielectric properties and microstructures of Ba(Mg1/3Ta2/3)O3 (BMT) ceramics sintered at low temperatures with 2–3 wt.% NaF additives were investigated. BMT ceramics sintered at 1340 °C for 3–12 h showed dielectric constants (r) of 25.5–25.7, Qf values of 41 500–50 400 GHz and temperature coefficients of the resonator frequency (τf) of 10.9–21.4 ppm °C−1. The variation of sintering time almost had no effect on the dielectric constant. The Qf value increased and the τf decreased with increasing sintering time. The ordering degree of Mg2+ and Ta5+ at B-sites increased with increasing sintering time.  相似文献   

14.
Powder metallurgy compacts of near theoretical density have been made from commercial sponge iron and atomized iron powders, the latter with and without admixed lubricant. Equivalent compacts were made by conventional quasi-static die pressing and by the dynamic powder compaction method to allow for comparative testing of mechanical properties. The compacts were sintered over a range of temperatures from 700 to 1120°C. Test specimens were cut from the compacts and tested to produce data on tensile strength, ductility (area reduction) and cantilever beam (Izod) impact strength.

Compacts made dynamically from both the sponge iron and atomized iron powders exhibited higher tensile strengths and ductilities than those made quasi-statically and sintered to the same temperature. However, there were marked differences in the impact strength. With the sponge iron powder, dynamic compacts had lower impact strength than equivalent quasi-static compacts, but the reverse result was obtained with the atomized powder. The atomized powder was of much higher purity than the sponge iron and the microstructural evidence indicated that the inferior impact strength of the dynamically compacted sponge iron was due to interaction between the shock waves used for compaction and the numerous brittle inclusions present in this material.

The results with the lubricated powder showed no sintering enhancement attributable to dynamic powder compaction. This suggests that the mechanism for the sintering enhancement that can be achieved with this consolidation technique is related to the friction processes at the particle boundaries, possibly coupled with the elevated temperatures present at these boundaries during dynamic compaction.  相似文献   


15.
The in situ synthesized TiB reinforced titanium matrix composites have been prepared by spark plasma sintering at 800–1200 °C under 20 MPa for 5 min. The effects of sintering temperature and reinforcement volume fraction on flexural strength, Young’s modulus and fracture toughness of the composites are investigated. The titanium matrix consists of -Ti and β-Ti phases, and the volume fraction of β-Ti increases with increasing sintering temperatures. The in situ synthesized TiB reinforcements are distributed randomly and uniformly in matrix. The transverse section of TiB has a hexagonal shape aligned along [0 1 0] direction, and the crystallographic planes of the TiB needles are always of the type . The 10 vol% TiB reinforced composite sintered at 1000 °C exhibits excellent mechanical properties. The flexural strength, Young’s modulus and fracture toughness of this composite are 1560 MPa, 137 GPa and 8.64 MPa · m1/2, respectively.  相似文献   

16.
High speed steel powders (T42 grade) have been uniaxially cold-pressed and subsequently densified through different sintering routes including: supersolidus liquid phase sintering (SLPS) under vacuum and different nitrogen pressures (0.2, 0.9, and 8 bar) and through solid state sintering (SSS) by hot isostatic pressing (HIP). HIP temperatures as low as 850 °C led to near full densification of the material (>98% theoretical density) with average size of M6C and MC carbides lower than 1 μm and grain size ≈3 μm. Pressureless sintering under different nitrogen pressures (up to 0.39 wt.%N absorption) led to a significant reduction of the optimum sintering temperature (OST) and a pronounced increase in the sintering window (SW) as compared to vacuum sintering. Pressureless sintering under 8 bar N2 led to a further reduction in OST together with the precipitation of massive eutectic structures. Therefore, the SW was judged to be negligible. The response of the as-sintered materials to the heat treatment is basically determined by the amount of C available in the matrix prior to quenching and the grain size. The highest hardness achievable for the sintering conditions evaluated ranges 700–1100 HV2 after austenitizing at 1100 °C, oil quenching and multitempering at 500–550 °C.  相似文献   

17.
Certain processing-related flaws in cold isostatically pressed ceramic powder compacts may arise from the delayed burn-out of organic binders until the sintering temperature is approached, although the isostatic compaction technique usually gives a higher and much more uniform green density than the conventional die compaction technique. For the 3 mol% Y2O3-doped zirconia powder in which 3 wt% PEG 1500 was introduced, the sintered density and sintering shrinkage were found to decrease in a near linear manner with increasing isostatic compaction pressure. The processing-related defects were identified as intergranular pores (1–5 m). It is considered that these processing-related defects are a consequence of incomplete organic burn-out at low and intermediate temperatures in the heating-up period and the swelling of intergranular pores associated with the burn-out of residual organic binders at temperatures close to the sintering temperature. A higher calcination temperature and an extended calcination dwell time may be required to eliminate the organic residuals in the isostatically pressed ceramic powder compacts than in the conventional die-pressed samples.  相似文献   

18.
Using a Zn3In2O6 target, indium-zinc oxide films were prepared by pulsed laser deposition. The influence of the substrate deposition temperature and the oxygen pressure on the structure, optical and electrical properties were studied. Crystalline films are obtained for substrate temperatures above 200°C. At the optimum substrate deposition temperature of 500°C and the optimum oxygen pressure of 10−3 mbar, both conditions that indeed lead to the highest conductivity, Zn3In2O6 films exhibit a transparency of 85% in the visible region and a conductivity of 1000 S/cm. Depositions carried out in oxygen and reducing gas, 93% Ar/7% H2, result in large discrepancies between the target stoichiometry and the film composition. The Zn/In (at.%) ratio of 1.5 is only preserved for oxygen pressures of 10−2–10−3 mbar and a 93% Ar/7% H2 pressure of 10−2 mbar. The optical properties are basically not affected by the type of atmosphere used during the film deposition, unlike the conductivity which significantly increases from 80 to 1400 S/cm for a film deposited in 10−2 mbar of O2 and in 93% Ar/7% H2, respectively.  相似文献   

19.
The experimental results of special features of the compaction and attendant phase transformations of compacts formed in sintering wurtzitic boron nitride nanopowders at high static pressures (p = 7.7 GPa) and temperatures (T = 1100–1800°C) have been considered. The principal possibility to produce polycrystalline superhard materials with nanocrystalline granular structures based on wurtzitic boron nitride has been established. The compaction of nanodispersed wurtzitic boron nitride at high barothermal conditions has been found to correspond to common regularities of the compaction of dispersed powder systems with regard to the effect of the phase and structural transformations.  相似文献   

20.
The most important design parameters for roller presses can be referred to flow and compression characteristics of bulk materials. Usually the flow properties are measured in the low stress range 1-50 kPa at the shear rate of about 1 mm/min. But this does not fit the stress regimes in the roller press. Therefore, the compression and flow behavior of the powder have to be investigated at higher pressures, shear rates, and shear displacements. These properties of bulk materials in the so-called medium pressure range 50-1000 kPa can be analyzed using a press shear cell. Tests were implemented with limestone, bentonite, and microcrystalline cellulose at average 23°C powder bed temperature using shear rates from 0.00042 to 0.042 m/s and a more realistic preshear displacement from 0.1 to 2 m for practical applications in powder compaction. Physical observation based compression functions were developed for the low and medium pressure range, which include simple equations for the compression rate and specific compression work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号