首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Min-Min problem of finding a disjoint-path pair with the length of the shorter path minimized is known to be NP-hard and admits no K-approximation for any K>1 in the general case (Xu et al. in IEEE/ACM Trans. Netw. 14:147–158, 2006). In this paper, we first show that Bhatia et al.’s NP-hardness proof (Bhatia et al. in J. Comb. Optim. 12:83–96, 2006), a claim of correction to Xu et al.’s proof (Xu et al. in IEEE/ACM Trans. Netw. 14:147–158, 2006), for the edge-disjoint Min-Min problem in the general undirected graphs is incorrect by giving a counter example that is an unsatisfiable 3SAT instance but classified as a satisfiable 3SAT instance in the proof of Bhatia et al. (J. Comb. Optim. 12:83–96, 2006). We then gave a correct proof of NP-hardness of this problem in undirected graphs. Finally we give a polynomial-time algorithm for the vertex disjoint Min-Min problem in planar graphs by showing that the vertex disjoint Min-Min problem is polynomially solvable in st-planar graph G=(V,E) whose corresponding auxiliary graph G(V,E∪{e(st)}) can be embedded into a plane, and a planar graph can be decomposed into several st-planar graphs whose Min-Min paths collectively contain a Min-Min disjoint-path pair between s and t in the original graph G. To the best of our knowledge, these are the first polynomial algorithms for the Min-Min problems in planar graphs.  相似文献   

2.
The Parity Path problem is to decide if a given graph contains both an induced path of odd length and an induced path of even length between two specified vertices. In the related problems Odd Induced Path and Even Induced Path, the goal is to determine whether an induced path of odd, respectively even, length between two specified vertices exists. Although all three problems are NP-complete in general, we show that they can be solved in $\mathcal{O}(n^{5})$ time for the class of claw-free graphs. Two vertices s and t form an even pair in G if every induced path from s to t in G has even length. Our results imply that the problem of deciding if two specified vertices of a claw-free graph form an even pair, as well as the problem of deciding if a given claw-free graph has an even pair, can be solved in $\mathcal{O}(n^{5})$ time and $\mathcal{O}(n^{7})$ time, respectively. We also show that we can decide in $\mathcal{O}(n^{7})$ time whether a claw-free graph has an induced cycle of given parity through a specified vertex. Finally, we show that a shortest induced path of given parity between two specified vertices of a claw-free perfect graph can be found in $\mathcal {O}(n^{7})$ time.  相似文献   

3.
We study the problem of packing element-disjoint Steiner trees in graphs. We are given a graph and a designated subset of terminal nodes, and the goal is to find a maximum cardinality set of element-disjoint trees such that each tree contains every terminal node. An element means a non-terminal node or an edge. (Thus, each non-terminal node and each edge must be in at most one of the trees.) We show that the problem is APX-hard when there are only three terminal nodes, thus answering an open question. Our main focus is on the special case when the graph is planar. We show that the problem of finding two element-disjoint Steiner trees in a planar graph is NP-hard. Similarly, the problem of finding two edge-disjoint Steiner trees in a planar graph is NP-hard. We design an algorithm for planar graphs that achieves an approximation guarantee close to 2. In fact, given a planar graph that is k element-connected on the terminals (k is an upper bound on the number of element-disjoint Steiner trees), the algorithm returns $\lfloor\frac{k}{2} \rfloor-1$ element-disjoint Steiner trees. Using this algorithm, we get an approximation algorithm for the edge-disjoint version of the problem on planar graphs that improves on the previous approximation guarantees. We also show that the natural LP relaxation of the planar problem has an integrality ratio approaching?2.  相似文献   

4.
A C-coloured graph is a graph, that is possibly directed, where the edges are coloured with colours from the set C. Clique-width is a complexity measure for C-coloured graphs, for finite sets C. Rank-width is an equivalent complexity measure for undirected graphs and has good algorithmic and structural properties. It is in particular related to the vertex-minor relation. We discuss some possible extensions of the notion of rank-width to C-coloured graphs. There is not a unique natural notion of rank-width for C-coloured graphs. We define two notions of rank-width for them, both based on a coding of C-coloured graphs by ${\mathbb{F}}^{*}$ -graphs— $\mathbb {F}$ -coloured graphs where each edge has exactly one colour from $\mathbb{F}\setminus \{0\},\ \mathbb{F}$ a field—and named respectively $\mathbb{F}$ -rank-width and $\mathbb {F}$ -bi-rank-width. The two notions are equivalent to clique-width. We then present a notion of vertex-minor for $\mathbb{F}^{*}$ -graphs and prove that $\mathbb{F}^{*}$ -graphs of bounded $\mathbb{F}$ -rank-width are characterised by a list of $\mathbb{F}^{*}$ -graphs to exclude as vertex-minors (this list is finite if $\mathbb{F}$ is finite). An algorithm that decides in time O(n 3) whether an $\mathbb{F}^{*}$ -graph with n vertices has $\mathbb{F}$ -rank-width (resp. $\mathbb{F}$ -bi-rank-width) at most k, for fixed k and fixed finite field $\mathbb{F}$ , is also given. Graph operations to check MSOL-definable properties on $\mathbb{F}^{*}$ -graphs of bounded $\mathbb{F}$ -rank-width (resp. $\mathbb{F}$ -bi-rank-width) are presented. A specialisation of all these notions to graphs without edge colours is presented, which shows that our results generalise the ones in undirected graphs.  相似文献   

5.
Call a connected planar graphG legal if it has at least two nodes, no parallel edges or self-loops and at most two terminals (degree 1 nodes) and all terminals and degree 2 nodes are exterior. This class of graphs arose in connection with a two-dimensional generating system for modeling growth by binary cell division. Showing that any permitted pattern can be generated properly requires a matching or pairing lemma. The vertex set of a legal graph withn nodes can be split intop adjacent pairs ands singletons withs p, resulting in a matching which includes at least \(2\left[ {\frac{n}{3}} \right]\) nodes. This bound is sharp in the sense that there are legal graphs for which this matching is maximum. The matching can be implemented by a linear time algorithm. A legal graph witht terminals and n≥4 nodes has a spanning tree with at most \(\left[ {\frac{{n - t}}{2}} \right] + t\) terminals; this bound is sharp. Such a spanning tree can be constructed by an algorithm which operates in almost linear time.  相似文献   

6.
In this paper we answer the question of when circulant quantum spin networks with nearest-neighbor couplings can give perfect state transfer. The network is described by a circulant graph G, which is characterized by its circulant adjacency matrix A. Formally, we say that there exists a perfect state transfer (PST) between vertices ${a,b\in V(G)}$ if |F(τ) ab | = 1, for some positive real number τ, where F(t) = exp(i At). Saxena et al. (Int J Quantum Inf 5:417–430, 2007) proved that |F(τ) aa | = 1 for some ${a\in V(G)}$ and ${\tau\in \mathbb {R}^+}$ if and only if all eigenvalues of G are integer (that is, the graph is integral). The integral circulant graph ICG n (D) has the vertex set Z n = {0, 1, 2, . . . , n ? 1} and vertices a and b are adjacent if ${\gcd(a-b,n)\in D}$ , where ${D \subseteq \{d : d \mid n, \ 1 \leq d < n\}}$ . These graphs are highly symmetric and have important applications in chemical graph theory. We show that ICG n (D) has PST if and only if ${n\in 4\mathbb {N}}$ and ${D=\widetilde{D_3} \cup D_2\cup 2D_2\cup 4D_2\cup \{n/2^a\}}$ , where ${\widetilde{D_3}=\{d\in D\ |\ n/d\in 8\mathbb {N}\}, D_2= \{d\in D\ |\ n/d\in 8\mathbb {N}+4\}{\setminus}\{n/4\}}$ and ${a\in\{1,2\}}$ . We have thus answered the question of complete characterization of perfect state transfer in integral circulant graphs raised in Angeles-Canul et al. (Quantum Inf Comput 10(3&4):0325–0342, 2010). Furthermore, we also calculate perfect quantum communication distance (distance between vertices where PST occurs) and describe the spectra of integral circulant graphs having PST. We conclude by giving a closed form expression calculating the number of integral circulant graphs of a given order having PST.  相似文献   

7.
For a given collection \(\mathcal{G}\) of directed graphs we define the join-reachability graph of \(\mathcal{G}\) , denoted by \(\mathcal{J}(\mathcal{G})\) , as the directed graph that, for any pair of vertices u and v, contains a path from u to v if and only if such a path exists in all graphs of  \(\mathcal{G}\) . Our goal is to compute an efficient representation of  \(\mathcal{J}(\mathcal{G})\) . In particular, we consider two versions of this problem. In the explicit version we wish to construct the smallest join-reachability graph for  \(\mathcal{G}\) . In the implicit version we wish to build an efficient data structure, in terms of space and query time, such that we can report fast the set of vertices that reach a query vertex in all graphs of  \(\mathcal{G}\) . This problem is related to the well-studied reachability problem and is motivated by emerging applications of graph-structured databases and graph algorithms. We consider the construction of join-reachability structures for two graphs and develop techniques that can be applied to both the explicit and the implicit problems. First we present optimal and near-optimal structures for paths and trees. Then, based on these results, we provide efficient structures for planar graphs and general directed graphs.  相似文献   

8.
Frequent subgraph mining has been extensively studied on certain graph data. However, uncertainty is intrinsic in graph data in practice, but there is very few work on mining uncertain graph data. This paper focuses on mining frequent subgraphs over uncertain graph data under the probabilistic semantics. Specifically, a measure called ${\varphi}$ -frequent probability is introduced to evaluate the degree of recurrence of subgraphs. Given a set of uncertain graphs and two real numbers ${0 < \varphi, \tau < 1}$ , the goal is to quickly find all subgraphs with ${\varphi}$ -frequent probability at least τ. Due to the NP-hardness of the problem and to the #P-hardness of computing the ${\varphi}$ -frequent probability of a subgraph, an approximate mining algorithm is proposed to produce an ${(\varepsilon, \delta)}$ -approximate set Π of “frequent subgraphs”, where ${0 < \varepsilon < \tau}$ is error tolerance, and 0 <?δ?< 1 is a confidence bound. The algorithm guarantees that (1) any frequent subgraph S is contained in Π with probability at least ((1 ? δ) /2) s , where s is the number of edges in S; (2) any infrequent subgraph with ${\varphi}$ -frequent probability less than ${\tau - \varepsilon}$ is contained in Π with probability at most δ/2. The theoretical analysis shows that to obtain any frequent subgraph with probability at least 1 ? Δ, the input parameter δ of the algorithm must be set to at most ${1 - 2 (1 - \Delta)^{1 / \ell_{\max}}}$ , where 0 <?Δ <?1, and ? max is the maximum number of edges in frequent subgraphs. Extensive experiments on real uncertain graph data verify that the proposed algorithm is practically efficient and has very high approximation quality. Moreover, the difference between the probabilistic semantics and the expected semantics on mining frequent subgraphs over uncertain graph data has been discussed in this paper for the first time.  相似文献   

9.
The Power Dominating Set problem is an extension of the well-known domination problem on graphs in a way that we enrich it by a second propagation rule: given a graph G(V,E), a set P?V is a power dominating set if every vertex is observed after the exhaustive application of the following two rules. First, a vertex is observed if vP or it has a neighbor in P. Secondly, if an observed vertex has exactly one unobserved neighbor u, then also u will be observed, as well. We show that Power Dominating Set remains $\mathcal{NP}$ -hard on cubic graphs. We design an algorithm solving this problem in time $\mathcal{O}^{*}(1.7548^{n})$ on general graphs, using polynomial space only. To achieve this, we introduce so-called reference search trees that can be seen as a compact representation of usual search trees, providing non-local pointers in order to indicate pruned subtrees.  相似文献   

10.
Minor Containment is a fundamental problem in Algorithmic Graph Theory used as a subroutine in numerous graph algorithms. A model of a graph H in a graph G is a set of disjoint connected subgraphs of G indexed by the vertices of H, such that if {u,v} is an edge of H, then there is an edge of G between components C u and C v . A graph H is a minor of G if G contains a model of H as a subgraph. We give an algorithm that, given a planar n-vertex graph G and an h-vertex graph H, either finds in time $\mathcal{O}(2^{\mathcal{O}(h)} \cdot n +n^{2}\cdot\log n)$ a model of H in G, or correctly concludes that G does not contain H as a minor. Our algorithm is the first single-exponential algorithm for this problem and improves all previous minor testing algorithms in planar graphs. Our technique is based on a novel approach called partially embedded dynamic programming.  相似文献   

11.
Although deciding whether the vertices of a planar graph can be colored with three colors is NP-hard, the widely known Grötzsch’s theorem states that every triangle-free planar graph is 3-colorable. We show the first o(n 2) algorithm for 3-coloring vertices of triangle-free planar graphs. The time complexity of the algorithm is $\mathcal{O}(n\log n)Although deciding whether the vertices of a planar graph can be colored with three colors is NP-hard, the widely known Gr?tzsch’s theorem states that every triangle-free planar graph is 3-colorable. We show the first o(n 2) algorithm for 3-coloring vertices of triangle-free planar graphs. The time complexity of the algorithm is O(nlogn)\mathcal{O}(n\log n) .  相似文献   

12.
In this paper we study collective additive tree spanners for special families of graphs including planar graphs, graphs with bounded genus, graphs with bounded tree-width, graphs with bounded clique-width, and graphs with bounded chordality. We say that a graph G=(V,E) admits a system of μ collective additive tree r -spanners if there is a system $\mathcal{T}(G)In this paper we study collective additive tree spanners for special families of graphs including planar graphs, graphs with bounded genus, graphs with bounded tree-width, graphs with bounded clique-width, and graphs with bounded chordality. We say that a graph G=(V,E) admits a system of μ collective additive tree r -spanners if there is a system T(G)\mathcal{T}(G) of at most μ spanning trees of G such that for any two vertices x,y of G a spanning tree T ? T(G)T\in\mathcal{T}(G) exists such that d T (x,y)≤d G (x,y)+r. We describe a general method for constructing a “small” system of collective additive tree r-spanners with small values of r for “well” decomposable graphs, and as a byproduct show (among other results) that any weighted planar graph admits a system of O(?n)O(\sqrt{n}) collective additive tree 0-spanners, any weighted graph with tree-width at most k−1 admits a system of klog 2 n collective additive tree 0-spanners, any weighted graph with clique-width at most k admits a system of klog 3/2 n collective additive tree (2w)(2\mathsf{w}) -spanners, and any weighted graph with size of largest induced cycle at most c admits a system of log 2 n collective additive tree (2?c/2?w)(2\lfloor c/2\rfloor\mathsf{w}) -spanners and a system of 4log 2 n collective additive tree (2(?c/3?+1)w)(2(\lfloor c/3\rfloor +1)\mathsf {w}) -spanners (here, w\mathsf{w} is the maximum edge weight in G). The latter result is refined for weighted weakly chordal graphs: any such graph admits a system of 4log 2 n collective additive tree (2w)(2\mathsf{w}) -spanners. Furthermore, based on this collection of trees, we derive a compact and efficient routing scheme for those families of graphs.  相似文献   

13.
We report progress on the NL versus UL problem.
  • We show that counting the number of s-t paths in graphs where the number of s-v paths for any v is bounded by a polynomial can be done in FUL: the unambiguous log-space function class. Several new upper bounds follow from this including ${{{ReachFewL} \subseteq {UL}}}$ and ${{{LFew} \subseteq {UL}^{FewL}}}$
  • We investigate the complexity of min-uniqueness—a central notion in studying the NL versus UL problem. In this regard we revisit the class OptL[log n] and introduce UOptL[log n], an unambiguous version of OptL[log n]. We investigate the relation between UOptL[log n] and other existing complexity classes.
  • We consider the unambiguous hierarchies over UL and UOptL[log n]. We show that the hierarchy over UOptL[log n] collapses. This implies that ${{{ULH} \subseteq {L}^{{promiseUL}}}}$ thus collapsing the UL hierarchy.
  • We show that the reachability problem over graphs embedded on 3 pages is complete for NL. This contrasts with the reachability problem over graphs embedded on 2 pages, which is log-space equivalent to the reachability problem in planar graphs and hence is in UL.
  •   相似文献   

    14.
    A node bisector of a graph Γ is a subset Ω of the nodes of Γ such that Γ may be expressed as the disjoint union $$\Gamma = \Omega _1 \dot \cup \Omega \dot \cup \Omega _2 ,$$ , where $\left| {\Omega _1 } \right| \geqslant \frac{1}{3}\left| \Gamma \right|,\Omega _2 \geqslant \frac{1}{3}\left| \Gamma \right|$ , and where any path from Ω1 to Ω2 must pass through Ω. Suppose Γ is the Cayley graph of an abelian groupG with respect to a generating set of cardinalityr, regarded as an undirected graph. Then we show that Γ has a node bisector of order at mostc¦G 1-1/r wherec is a constant depending only onr. We show that the exponent in this result is the best possible.  相似文献   

    15.
    Traditionally, the quality of orthogonal planar drawings is quantified by either the total number of bends, or the maximum number of bends per edge. However, this neglects that in typical applications, edges have varying importance. In this work, we investigate an approach that allows to specify the maximum number of bends for each edge individually, depending on its importance. We consider a new problem called FlexDraw that is defined as follows. Given a planar graph G=(V,E) on n vertices with maximum degree 4 and a function $\operatorname{flex}: E \longrightarrow\mathbb{N}_{0}$ that assigns a flexibility to each edge, does G admit a planar embedding on the grid such that each edge e has at most $\operatorname{flex}(e)$ bends? Note that in our setting the combinatorial embedding of G is not fixed. FlexDraw directly extends the problem β-embeddability asking whether G can be embedded with at most β bends per edge. We give an algorithm with running-time O(n 2) solving FlexDraw when the flexibility of each edge is positive. This includes 1-embeddability as a special case and thus closes the complexity gap between 0-embeddability, which is $\mathcal{NP}$ -hard to decide, and 2-embeddability, which is efficiently solvable since every planar graph with maximum degree 4 admits a 2-embedding except for the octahedron. In addition to the polynomial-time algorithm we show that FlexDraw is $\mathcal{NP}$ -hard even if the edges with flexibility 0 induce a tree or a union of disjoint stars.  相似文献   

    16.
    We relate the exponential complexities 2 s(k)n of $\textsc {$k$-sat}$ and the exponential complexity $2^{s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))n}$ of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ (the problem of evaluating quantified formulas of the form $\forall\vec{x} \exists\vec{y} \textsc {F}(\vec {x},\vec{y})$ where F is a 3-cnf in $\vec{x}$ variables and $\vec{y}$ variables) and show that s(∞) (the limit of s(k) as k→∞) is at most $s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))$ . Therefore, if we assume the Strong Exponential-Time Hypothesis, then there is no algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ running in time 2 cn with c<1. On the other hand, a nontrivial exponential-time algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ would provide a $\textsc {$k$-sat}$ solver with better exponent than all current algorithms for sufficiently large k. We also show several syntactic restrictions of the evaluation problem $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ have nontrivial algorithms, and provide strong evidence that the hardest cases of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ must have a mixture of clauses of two types: one universally quantified literal and two existentially quantified literals, or only existentially quantified literals. Moreover, the hardest cases must have at least n?o(n) universally quantified variables, and hence only o(n) existentially quantified variables. Our proofs involve the construction of efficient minimally unsatisfiable $\textsc {$k$-cnf}$ s and the application of the Sparsification lemma.  相似文献   

    17.
    Yuichi Yoshida  Hiro Ito 《Algorithmica》2012,62(3-4):701-712
    We present an algorithm for testing the k-vertex-connectivity of graphs with the given maximum degree. The time complexity of the algorithm is independent of the number of vertices and edges of graphs. Fixed degree bound d, a graph G with n vertices and a maximum degree at most d is called ε-far from k-vertex-connectivity when at least $\frac{\epsilon dn}{2}$ edges must be added to or removed from G to obtain a k-vertex-connected graph with a maximum degree at most d. The algorithm always accepts every graph that is k-vertex-connected and rejects every graph that is ε-far from k-vertex-connectivity with a probability of at least 2/3. The algorithm runs in $O(d(\frac{c}{\epsilon d})^{k}\log\frac {1}{\epsilon d})$ time (c>1 is a constant) for (k?1)-vertex-connected graphs, and in $O(d(\frac{ck}{\epsilon d})^{k}\log\frac{k}{\epsilon d})$ time (c>1 is a constant) for general graphs. It is the first constant-time k-vertex-connectivity testing algorithm for general k≥4.  相似文献   

    18.
    To model association fields that underly perceptional organization (gestalt) in psychophysics we consider the problem P curve of minimizing $\int _{0}^{\ell} \sqrt{\xi^{2} +\kappa^{2}(s)} {\rm d}s $ for a planar curve having fixed initial and final positions and directions. Here κ(s) is the curvature of the curve with free total length ?. This problem comes from a model of geometry of vision due to Petitot (in J. Physiol. Paris 97:265–309, 2003; Math. Inf. Sci. Humaines 145:5–101, 1999), and Citti & Sarti (in J. Math. Imaging Vis. 24(3):307–326, 2006). In previous work we proved that the range $\mathcal{R} \subset\mathrm{SE}(2)$ of the exponential map of the underlying geometric problem formulated on SE(2) consists of precisely those end-conditions (x fin,y fin,θ fin) that can be connected by a globally minimizing geodesic starting at the origin (x in,y in,θ in)=(0,0,0). From the applied imaging point of view it is relevant to analyze the sub-Riemannian geodesics and $\mathcal{R}$ in detail. In this article we
    • show that $\mathcal{R}$ is contained in half space x≥0 and (0,y fin)≠(0,0) is reached with angle π,
    • show that the boundary $\partial\mathcal{R}$ consists of endpoints of minimizers either starting or ending in a cusp,
    • analyze and plot the cones of reachable angles θ fin per spatial endpoint (x fin,y fin),
    • relate the endings of association fields to $\partial\mathcal {R}$ and compute the length towards a cusp,
    • analyze the exponential map both with the common arc-length parametrization t in the sub-Riemannian manifold $(\mathrm{SE}(2),\mathrm{Ker}(-\sin\theta{\rm d}x +\cos\theta {\rm d}y), \mathcal{G}_{\xi}:=\xi^{2}(\cos\theta{\rm d}x+ \sin\theta {\rm d}y) \otimes(\cos\theta{\rm d}x+ \sin\theta{\rm d}y) + {\rm d}\theta \otimes{\rm d}\theta)$ and with spatial arc-length parametrization s in the plane $\mathbb{R}^{2}$ . Surprisingly, s-parametrization simplifies the exponential map, the curvature formulas, the cusp-surface, and the boundary value problem,
    • present a novel efficient algorithm solving the boundary value problem,
    • show that sub-Riemannian geodesics solve Petitot’s circle bundle model (cf. Petitot in J. Physiol. Paris 97:265–309, [2003]),
    • show a clear similarity with association field lines and sub-Riemannian geodesics.
      相似文献   

    19.
    In this paper we study quadrature formulas of the form $$\int\limits_{ - 1}^1 {(1 - x)^a (1 + x)^\beta f(x)dx = \sum\limits_{i = 0}^{r - 1} {[A_i f^{(i)} ( - 1) + B_i f^{(i)} (1)] + K_n (\alpha ,\beta ;r)\sum\limits_{i = 1}^n {f(x_{n,i} ),} } } $$ (α>?1, β>?1), with realA i ,B i ,K n and real nodesx n,i in (?1,1), valid for prolynomials of degree ≤2n+2r?1. In the first part we prove that there is validity for polynomials exactly of degree2n+2r?1 if and only if α=β=?1/2 andr=0 orr=1. In the second part we consider the problem of the existence of the formula $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} f(x)dx = A_n f( - 1) + B_n f(1) + C\sum\limits_{i = 1}^n {f(x_{n,i} )} }$$ for polynomials of degree ≤n+2. Some numerical results are given when λ=1/2.  相似文献   

    20.
    We consider the $\mathcal{NP}$ -hard problem of finding a spanning tree with a maximum number of internal vertices. This problem is a generalization of the famous Hamiltonian Path problem. Our dynamic-programming algorithms for general and degree-bounded graphs have running times of the form $\mathcal{O}^{*}(c^{n})$ with c≤2. For graphs with bounded degree, c<2. The main result, however, is a branching algorithm for graphs with maximum degree three. It only needs polynomial space and has a running time of $\mathcal{O}(1.8612^{n})$ when analyzed with respect to the number of vertices. We also show that its running time is $2.1364^{k} n^{\mathcal{O}(1)}$ when the goal is to find a spanning tree with at least k internal vertices. Both running time bounds are obtained via a Measure & Conquer analysis, the latter one being a novel use of this kind of analysis for parameterized algorithms.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号