首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在分析国内外磨削加工误差分析与补偿研究现状基础上,针对X轴和C轴两轴联动的凸轮轴数控磨削的轮廓误差提出一种轮廓误差分析和补偿策略,以提高凸轮磨削加工精度。基于凸轮轴数控磨削的X-C联动运动模型,推导了由凸轮升程表到磨削加工位移表的数学模型;指出凸轮升程与轮廓的误差变化规律在趋势上具有一致性。基于最小二乘多项式方法对多次磨削加工实验的凸轮升程误差进行一系列拟合处理,得到稳定的、可重复的凸轮升程预测误差;将升程预测误差按一定比例反向叠加到理论升程表中,采用最小二乘多项式法进行光顺,得到光顺的虚拟升程表;利用虚拟升程表对同类型凸轮轴进行磨削加工实验。实验结果表明,砂轮架速度和加速度在机床伺服响应范围之内,凸轮最大升程误差与最大相邻误差降低,凸轮轮廓表面粗糙度值满足加工要求,从而证明该误差分析和补偿方法是正确可行的。  相似文献   

2.
针对曲轴非圆磨削,以恒当量磨削厚度角度出发,研究了C-X-Y三轴联动的曲轴连杆颈切点跟踪磨削法,分析模型简化过程中可能产生的误差;并且基于西门子SINUMERIK840D数控系统,实现数控曲轴磨床多项式插值算法的开发,提高了曲轴磨削加工精度。  相似文献   

3.
为实现非圆曲面零件X-C恒磨除率磨削,将磨除率分解为磨削点的移动速度、磨削接触弧长及工件宽度的乘积;通过改变C轴转速调整磨削点移动速度,实现恒磨除率磨削。因为X,C轴速度沿磨削点切线速度分量存在耦合,所以首先建立了非圆曲面磨削X-C联动速度关系模型,并据此提出了磨削点移动线速度计算公式;分析了非圆曲面磨削过程中接触弧长的变化情况,提出了磨削点处曲率圆与砂轮相交弧长代替磨削接触长的近似计算方法。以平底推杆凸轮加工为例,在数控凸轮轴磨床上进行了凸轮恒角速及恒磨除率变速磨削试验。实验结果表明,非圆恒磨除率变速磨削方法提高了磨削力的平稳度,从而提高了加工质量。  相似文献   

4.
廓形误差是凸轮最重要的精度指标,由于磨削过程复杂,廓形误差通常通过离线抽检获得,难以实现在线补偿控制。提出了一种基于BP神经网络与镜面补偿凸轮磨削力-伺服滞后信息融合廓形误差预测、补偿方法。通过对凸轮磨削过程中影响廓形误差的主要因素分析,将X轴跟随误差、C轴跟随误差、磨削力三项传感器信息作为输入特征,凸轮廓形误差作为输出特征,利用BP神经网络的逼近性能和全局最优特性,建立了凸轮廓形误差预测模型,并提出了凸轮廓形误差镜面补偿方法。进行了预测模型训练与补偿验证,结果表明,该方法能够有效预测凸轮廓形误差,并提高凸轮加工廓形精度。  相似文献   

5.
吴兴  黄文广  黄兴红  潘旭华 《机电工程》2012,(6):636-639,644
针对凸轮随动磨削中因工件轴转速差、伺服系统响应偏差、硬件制造误差等重复性误差影响因素造成的零件制造精度下降问题,将在线测量技术和Sinumerik 840D数控系统的插补表与电子齿轮功能应用到机床运动控制系统中,开展了随动磨削工艺的运动轨迹和控制方案分析,提出了由内嵌在系统PCU上的VB程序来处理在线测量获得的360个离散误差补偿数值,自动生成带插补表与电子齿轮功能的专用加工程序,利用同轴运动叠加控制方法,把补偿值叠加到进给轴上,使带误差补偿数据的凸轮加工NC程序不断根据实际加工状态更新,最后在工程样机上进行了磨削试验。试验结果表明,发动机凸轮轴的廓型最大加工误差降到了2.6μm以下,残余误差主要来源为机械振动、非线性摩擦扰动等随机性偏差。该运动控制和误差补偿方法能在实际加工中较好地补偿重复性误差因素对工件精度产生的影响。  相似文献   

6.
本文从标准轴(原始靠模)的选择与制造、靠模的“反靠”、凸轮的磨削、标准凸轮补偿量的确定和“补偿反靠”的工艺程序等方面,论述了凸轮靠模“补偿反靠”的制造方法。  相似文献   

7.
为进一步提高凸轮轴的加工精度、表面质量和加工效率,根据X-C轴联动磨床的运动原理,建立了凸轮轴恒线速加工理论数学模型,依据该数学模型采用三次样条拟合插值法,建立了凸轮转速优化调节的数值计算模型。结合具体凸轮轴零件及其磨削加工工艺方案的具体参数,计算出机床各运动轴加工过程的运动数据,在确保无工艺故障的前提下,最终把各轴的运动数据自动转换为对应数控控制系统的数控加工程序,从而实现了凸轮轴磨削的自动数控编程。最后在CNC8312A数控高速凸轮轴磨床上,对钱江32F型号凸轮轴的进气凸轮和排气凸轮分别进行磨削加工试验,得到了预期加工效果。试验验证表明,该加工速度优化调节及其自动数控编程方法在理论上和实践上都是可行的,完全满足实际生产的需要。  相似文献   

8.
凸轮加工采用的是一种非圆磨削策略,根据凸轮切点跟踪磨削原理给出了凸轮磨削数学模型和恒线速度磨削条件下凸轮转速数学模型。重点分析了在恒转速和恒线速度磨削两种情况下凸轮转速规律的变化,通过仿真分析,找出影响凸轮加工精度的原因,并依此寻求恰当的加工方法。  相似文献   

9.
凸轮轴数控磨削工件主轴转速优化建模与实验研究   总被引:1,自引:0,他引:1  
根据凸轮轴X-C轴联动恒线速度磨削加工数学模型,建立了砂轮架进给位移与速度、凸轮工件主轴转速的理论方程。根据数控凸轮轴磨床加工能力的约束条件,对砂轮架进给中速度、加速度或加加速度值超出限定值的凸轮转角区间,通过积分反求方法求解出相应转角区间工件主轴所允许的转速值,并以该段转速值替换对应的转角区间上凸轮轴恒线速度磨削时理论转速值。对优化计算前后的工件主轴转速曲线进行了凸轮轴磨削加工实验。实验结果表明:采用优化后的凸轮工件主轴转速进行加工,相比于恒线速度理论转速加工,其升程最大误差与最大相邻误差减小,工件表面粗糙度降低,提高了凸轮轴高效精密磨削加工质量。  相似文献   

10.
提高精密凸轮磨削精度的几何误差补偿技术   总被引:6,自引:0,他引:6  
针对精密凸轮加工中存在的精度问题,推导出凸轮磨削中的理想砂轮中心包络线的求解方程,进而将基于多体系统理论的误差补偿技术与凸轮加工设计方法相结合,研究了理想数控指令的生成方法、砂轮轮廓误差的计算方法、精密数控指令和逆变凸轮廓型的求解算法,在此基础上,开发出凸轮精密磨削过程的误差补偿与动态仿真分析软件。实验表明,运用该软件生成的精密数控指令以及逆变凸轮廓型,可直接保证凸轮廓型的加工精度,提高凸轮生产效率50%以上。  相似文献   

11.
杨萍  李松生 《轴承》2001,(6):29-30
1 轴承内圆磨削的特点轴承是应用最广的机械基础件之一 ,随着科学技术进步 ,要求轴承的精度及运转速度越来越高 ,轴承套圈内圆 (外圈内沟道及内圈内孔 )的磨削精度是决定轴承精度的重要因素之一 ,此外 ,轴承的规模生产还要求有高的生产效率 ,这些都需要提高砂轮的磨削精度。由于轴承套圈内圆直径的限制 ,使得砂轮的直径不可能很大 ,因此 ,提高砂轮的转速即磨床主轴的转速 ,就成为提高砂轮磨削速度的唯一途径。2 内圆磨床主轴的发展过程图 1所示是内圆磨床主轴的发展过程示意图 ,可以看出 ,内圆磨床主轴大致经历了皮带轴(机械主轴 )、电主…  相似文献   

12.
凸轮磨床磨削凸轮的工作原理,是利用靠模和凸轮工件共同固定在磨床主轴0上作与速圆周运动(见图1)。由于弹簧作用,靠模始终与一固定铁轮O’相切,使磨床主轴O对O1轴按一定规律摆动。砂轮沿水平方向进刀,直到凸轮基圆磨到设计尺寸为止。由于凸轮磨削时,在凸轮不同型面上相对运动速度和受力状态不同,形成了凸轮摩削的特殊动态特性,它对磨削质量──凸轮的加工精度及表面质量,尤其是凸轮升程精度产生明显影响。一、磨削凸轮不同型面上的相对运动速度分析为了简化运算,根据反转原理,可以假定凸轮轴固定不转,砂轮及机床绕凸轮轴作反…  相似文献   

13.
以数控凸轮磨床的磨削过程为研究对象,建立了凸轮磨削过程的磨削力数学模型,研究了磨削力的间接检测和控制方法,并在此基础上提出一种基于模糊策略的适应控制方法对凸轮磨削过程的磨削力给予控制,采用MATALAB进行了控制器的设计和磨削加工的仿真验证,结果表明该方法能有效地解决凸轮磨削过程中的磨削力的波动问题,控制器具有良好的动态特性,实现了磨削过程中的最优金属切除率的目的,提高了凸轮磨削的表面质量。  相似文献   

14.
离散型空间焊道CBN砂带当量随行磨削技术   总被引:1,自引:0,他引:1  
提出一种离散型空间(椭圆形、马鞍形、相惯线形等)焊道的磨削加工技术——立方氮化硼(Cubic boron nitride,CBN)砂带当量随行磨削方法,该方法一方面基于测量技术以及磨削量预测模型,利用四轴联动以及恒压力浮动砂带磨削技术实现离散型空间焊道当量随形磨削加工,保证焊道的等余量控制;另一方面针对焊道材料的难加工特性,运用CBN砂带实现高效率、高精度磨削加工。阐述了当量随行磨削加工原理,建立随行磨削加工模型,分析随行运动误差。基于测量技术以及磨削量预测模型,建立当量磨削控制方程。针对椭圆形焊道典型零件——燃烧室机匣进行了磨削加工试验,得到其磨削余量厚度误差在±0.005 mm以内,证明该方法的可行性,得到焊道磨削的最优工艺(砂带线速度24 m/s,磨削压力170 N,工件转速1r/min),并且得到工件旋转速度是影响材料去除率最大的工艺参数。  相似文献   

15.
在凸轮轴的磨削加工过程中,伺服轴过大的速度、加速度等因素将会影响磨削加工精度。通过使用粒子群优化算法来优化联动轴的指令,同时保持空间联动关系不变,以及降低最大加速度等不利因素,可提高加工精度。优化试验结果表明,基于粒子群优化算法的优化速度很快,其结果也令人满意。  相似文献   

16.
从凸轮轴磨床磨削工件凸轮、反靠凸轮靠模的过程,凸轮靠模轮廓曲线的形成,补偿反靠凸轮靠模的方法,标准凸轮轴的刮削及补偿量的确定,凸轮靠模的检测与评定等,论述了凸轮靠模的设计、制造与检测方法。  相似文献   

17.
围绕凸轮轴随动磨削原理求解凸轮随动磨削中磨削运动参数,对FANUC31i开放式数控系统的高速切削循环功能以及学习控制原理进行研究,在MK8340高速凸轮轴随动磨床上进行试验验证。通过宏执行器以高速脉冲形式将磨削运动参数分配存储至系统P-Code变量中,结合高速切削循环功能实现了凸轮轴随动磨削运动,并采用学习功能完成了伺服控制器的自学习优化,进而改善了凸轮随动磨削运动的伺服跟踪性能,使凸轮轴高速随动磨削加工精度和效率得到提高。  相似文献   

18.
凸轮是复杂的非圆零件,加工过程中,瞬时速度和加速度剧烈变化会降低加工品质。推导了恒磨除率变速磨削数学模型。基于恒力磨削的思想,得到了凸轮C轴变速恒磨除率公式。在此基础上,运用最小二乘法对凸轮轮廓数据进行多项式拟合,得到平滑的凸轮转速曲线和砂轮进给速度曲线。仿真结果表明,该方法能够使磨除率保持近似恒定的同时,还得到平滑的旋转轴转速曲线,并大幅减小C轴的加速度,从而提高凸轮轴磨削精度。  相似文献   

19.
针对发动机上凸轮轴的应用情况,重点介绍了整体式凸轮轴和组装式凸轮轴的制造现状及关键技术.整体式凸轮轴中凸轮的磨削效率及加工精度有待进一步提高;组装式凸轮轴构思新颖,但凸轮与芯轴的连接技术、凸轮精密成形、装配技术与设备等关键技术问题有待进一步研究.  相似文献   

20.
为保证数控凸轮轴磨床中凸轮的轮廓精度,采用了砂轮架随动的磨削方法;针对控制轴对动态精度的高要求,介绍了使用FANUC数控系统的学习控制功能;应用结果表明,学习控制功能在数控凸轮轴磨床上应用之后,能使机床的运动精度在原有的基础上得到进一步的提高;目前德国JUNKER公司生产的数控随动曲轴磨床和凸轮磨床都运用了这一项技术,应用前景十分广阔。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号