首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
设计了一种新型含复合球副5自由度并联机构,分析了机构的特点和自由度。建立了该机构的位置解析模型。利用观察法判断部分驱动分支中存在的约束力/矩,基于约束力/矩推导了含复合球副5自由度并联机构的Jacobian矩阵和Hessian矩阵,建立了含复合球副5自由度并联机构的运动学模型。利用先进CAD软件,对机构的位置解析模型和运动学模型进行了验证。基于含复合球副5自由度并联机构的位置解析模型得到了机构工作空间的形状及大小。利用该机构Jacobian矩阵,对含复合球副5自由度并联机构的奇异性进行了分析。  相似文献   

2.
基于矩阵QR分解,提出一种具有通用性的少自由度并联机构运动学建模方法,建立少自由度机构正、逆一二阶影响系数矩阵,同时得到了少自由度并联机构操作端的速度、加速度的约束方程及一二阶约束矩阵。基于虚功原理,建立少自由度机构的柔度模型,并在此基础上推导出少自由度并联机构在各维方向刚度表达式。分析3RPS机构的运动学输出的耦合性,建立其柔度模型及方向刚度模型,并验证了此机构的结构约束对运动学的影响。通过机构在移动方向刚度及转动方向刚度的球面坐标分布,直观地描述少自由度并联机构的结构约束对其刚度性能的影响。  相似文献   

3.
提出一种新型过约束2-UPS+2-RPU并联机构,该机构的2个RPU分支一共提供了4个约束,但由于机构运动副的特殊布置,其中的2个约束为过约束。首先,基于螺旋理论分析该机构中存在的约束反力,建立该机构的速度约束方程,并基于此分析该机构的自由度。其次,建立该机构的几何约束方程,利用解析矢量法求得机构位置逆解方程。随后,基于计算杆件变形方法及小变形叠加原理,分析各杆在支链约束力螺旋作用下产生的弹性变形,并定义了分支约束力螺旋系刚度矩阵。最后,建立机构的动平台位姿变化与外载荷关系,进而得到机构的整体柔度、刚度矩阵。得出约束力/矩对这类少自由过约束机构的刚度和变形影响很大且其弹性变形主要产生在约束力/矩轴线方向。  相似文献   

4.
提出了一种新型含平面分支的少自由度并联机构。建立了该并联机构的虚拟样机模型,并分析了机构的自由度及结构特点。通过对平面闭环分支及约束分支的速度解析,推导了机构的6×6的雅克比矩阵。综合考虑了平面分支中上、下横梁的弹性变形及SPR分支中约束力作用下的弹性变形对并联机构刚度的影响,建立了该机构的整体刚度矩阵。将理论解析解与软件Solidworks Simulation的仿真结果对比,验证了所建刚度模型的正确性,为含平面分支少自由度并联机构的开发和应用提供了理论基础。  相似文献   

5.
依据宏/微驱动模式,将4-HUPU少自由度并联机构转变为4-HUU并联机构和4-UPU并联机构,从而简化了并联机构的运动学建模及分析,为设计及控制奠定了基础.采用虚设机构法导出4-HUPU机构在宏/微驱动下的影响系数矩阵,并基于影响系数矩阵对宏/微驱动下两个机构的速度、加速度进行分析,完成4-HUPU少自由度并联机构运动学建模及分析.通过数值算例验证了该分析方法的准确性.  相似文献   

6.
提出一种6—PSS定杆长构型的六自由度并联机构,根据运动过程中支撑杆长不变,建立PSS支链的运动学反解方程;利用两端球面副在支撑杆上的速度投影,推导了机构的雅克比矩阵;基于非保守系统下的拉格朗日方程,推导和建立了系统的动力学模型;为系统各运动副以及构件之间的约束力和驱动力的求解奠定了基础。参考原型机模型,采用差商求导的方法,求解系统拉格朗日方程中的多阶偏导,最后结合Matlab对机构的运动学和动力学模型进行数值仿真,并绘制机构的动力学和运动学各参数随时间变化曲线,总结出了该机构的运动学和动力学特征,为进一步研究相关类型并联机构的设计、控制以及性能等具有一定的指导性的意义。  相似文献   

7.
基于螺旋理论建立2-TPS/2-TPR少自由度非对称并联机构完整Jacobian矩阵,它由约束子矩阵和运动子矩阵组成。这两者在并联机构分析(特别是在进行尺寸综合等运动学设计和性能评价)中起着重要的作用。首先,利用螺旋理论先导出2个TPR分支链对平台的约束子矩阵;其次,分别锁定各支链主动副,基于螺旋理论依次导出4个支链对应的运动子矩阵。在约束子矩阵和运动子矩阵基础上,推导出2-TPS/2-TPR并联机构完整Jacobian矩阵。根据实际运用布置2-TPS/2-TPR并联机构铰链,得到其完整Jacobian矩阵,为今后对该机构的进一步分析提供依据。  相似文献   

8.
并联机构,尤其是用于机加工的并联机床都需要很高的刚度要求,因此建立其刚度模型就显得尤为重要。现有的刚度建模方法多是基于集中刚度模型,但是该方法的物理意义不够明确。基于螺旋理论建立了一种少自由度并联机构的刚度模型,该方法将驱动刚度和约束刚度区别对待,物理意义明确。通过计算并联机构空间自由度,并利用螺旋方程的反螺旋解法,得出并联机构的运动雅可比矩阵和约束雅可比矩阵,经组合得到少自由度并联机构的完全雅可比矩阵,从而建立了其静刚度模型。建立的静刚度模型可以作为少自由度并联机构的性能评价指标,同时又可以为分析其他过约束的少自由度并联机构提供理论支持。  相似文献   

9.
求解3-RPS并联机构刚度的新方法   总被引:9,自引:1,他引:8  
对于少自由度机构来说,由于结构约束的存在,机构中出现了约束反力,约束反力会在机构中产生变形,影响整个机构的精度,在机构分析中必须加以考虑。基于此,以传统的3-RPS并联机构为例,给出考虑约束反力产生变形的刚度模型的建立方法。首先,用观察法分析该机构中存在的约束反力。其次,建立该机构的6×6形式雅可比矩阵,并运用虚功原理建立该机构的静力学模型。最后,分析机构在驱动力和约束力共同作用下产生的弹性变形。在约束反力产生的变形方向上虚设P副,将3-RPS机构的变形和刚度分析转化为一个等效的无约束反力的6自由度并联机构3-RPPS的变形和刚度分析。这种方法给少自由度机构的研究提供了一些新观点。  相似文献   

10.
基于螺旋理论的3-RPS型并联机器人运动学分析   总被引:1,自引:0,他引:1  
3-RPS型并联机构具有三个结构对称的支链形式,各支链由一个转动副连接机座、一个球面副与动平台相连接,转动副与球面副由移动副所连接。采用螺旋理论及空间机构构型原理,通过约束形式分析得出该类型并联机器人运动性质,采用矢量分析方法对其运动学正解/反解进行求解,得出该并联机构运动学方程。基于对称非齐次性少自由度并联机构Jacobine矩阵,进一步对该类型并联机器人结构奇异性进行分析与总结。  相似文献   

11.
少自由度并联机器人机构的静力分析   总被引:8,自引:0,他引:8  
与6自由度并联机器人不同,少自由度并联机器人机构的支链不仅传递驱动力,同时还要向末端提供约束力,然而在对此类机构进行静力分析时,现有的研究都忽略了约束力的传递特性。为此,以微分流形理论为基础,分析指出少自由度并联机器人末端的完整力空间应包括驱动力子空间和约束力子空间,并以此为基础,利用虚功原理,给出一种建立此类机构输入与输出广义力间完整映射的方法。此完整力映射包括驱动力映射矩阵和约束力映射矩阵。通过计算这两个矩阵的条件数,可以分别分析此类机构驱动力和约束力的传递特性。该分析方法的物理意义和数学理论相统一,且概念清晰,便于深入理解少自由度并联机构静力传递的特性。最后,以3-UPU并联机器人机构为例进行实例分析。  相似文献   

12.
基于旋量理论和李群李代数方法,以4自由度2UPS-RPU并联机构为例,提出了含串联输入支链的并联机构正运动学雅可比矩阵的一种新的推导方法。首先利用指数积公式建立含串联输入支链的位置正解,得出动平台位姿矩阵,根据动平台位姿矩阵列出第2和第3支链对动平台的约束方程,通过对方程组两边微分,得出第1支链关节速度与主动关节速度的映射关系,然后代入第1支链正运动学速度关系式,得出并联机构的正运动学雅可比矩阵。最后,基于螺旋理论建立了并联机构逆运动学的完整雅可比矩阵。为机构的奇异性分析提供了理论基础。  相似文献   

13.
基于4-SPS/S三自由度冗余驱动并联机构的位置逆解模型,运用微分法推导出了该并联机构的雅可比矩阵,结合Gosselin奇异性分析法和数值分析法,分析了该并联机构的奇异性。随后分析了影响4-SPS/S三自由度冗余驱动并联机构工作空间的主要因素,并对其各支链的行程限制、各球铰副的转角限制和各支链间的尺寸干涉限制等影响因素进行了解析化分析。最后,基于4-SPS/S三自由度冗余驱动并联机构的位置正解模型,设计了该并联机构回转工作空间的求解算法。该算法避免了数值方法及几何方法的复杂性和不确定性,实现了回转工作空间的直观性表达。  相似文献   

14.
为提高光电产品自动视觉检测的准确性,研制了一种含冗余驱动支链的4SPS/S球面并联调姿平台样机。含冗余驱动支链的4SPS/S并联机构为调姿平台机构本体,具有绕动平台中心点的3个转动自由度,可以实现待检零件任意角度图像信息的获取。建立了该并联机构的运动学模型,导出了机构位置逆解方程和雅可比矩阵;基于雅可比矩阵的秩讨论了机构的奇异性,并验证了冗余驱动支链能消除机构内部奇异;基于雅可比矩阵的非冗余分解,提出了一种评价冗余驱动并联机构力传递性能的指标。分析机构动定平台球铰安装方式对机构运动学性能的影响,得到了机构姿态空间体积大、灵巧度好的动定平台球铰安装方式;设计制作了球面并联检测平台样机,分析并绘制了样机姿态空间以及灵巧度、力传递性能在姿态空间内的分布。结果表明,样机转动空间大,无内部奇异,灵巧度和力传递性能高且分布均匀,能满足光电产品瑕疵检测的工艺要求。  相似文献   

15.
考虑球面副间隙的4-SPS/CU并联机构动力学分析   总被引:8,自引:0,他引:8  
基于机械系统动力学方程的增广法建立考虑球面副间隙的4-SPS/CU并联机构动力学模型。为了简化该并联机构的动力学模型,通过质量矩的方法视驱动支链为一个整体。根据含间隙球面副元素的接触方式建立该间隙运动副的运动学模型,求出含间隙球面副元素之间的接触变形量与相对接触速度。考虑到接触体之间接触刚度与机械系统动力学模型之间的耦合性,以非线性刚度系数代替Flores接触模型中的常数刚度系数而提出一种改进的接触力模型,并基于该接触力模型利用接触变形量与相对法向接触速度建立间隙运动副元素之间的法向接触力模型,为了保证数值运算的稳定性,采用具有动态修正系数的Coulomb摩擦模型,建立接触体之间的切向接触力模型。进一步把间隙运动副元素之间的接触力转换到该间隙运动副所连接的驱动支链和上平台的质心上,并把该接触力集成到4-SPS/CU并联机构动力学模型的广义力中,从而成功引入了关节间隙效应,采用Baumgarte稳定约束法避免了积分过程中的约束违约问题。通过数值分析预测球面副间隙对4-SPS/CU并联机构动力学性能的影响。  相似文献   

16.
一种少自由度3-SPR并联机构的刚度和弹性变形分析   总被引:1,自引:0,他引:1  
叶勇  康亮 《机械传动》2014,(7):131-134
针对并联机构中的约束反力会影响机构的刚度和产生弹性变形的问题,以传统的3-SPR并联机构为例,采用基于驱动/被动约束力求解其总刚度矩阵和弹性变形的方法。首先,分析该并联机构受力位置并确定驱动/被动约束力的姿态。然后,分析该机构的驱动约束分支的弹性变形,导出驱动约束分支的伴随矩阵。最后求解出该并联机构的总刚度矩阵和弹性变形。得到结论:当建立3-SPR并联机构的总刚度矩阵和求解弹性变形时,必须考虑约束力/矩的影响。  相似文献   

17.
为了掌握含间隙4-UPS-RPU并联机构的动力学特性,建立了含球面副间隙空间并联机构的刚体动力学模型,实现了机构的动力学分析。首先假定并联机构的驱动支链与动平台相连的球面副元素之间存在间隙,基于"接触—分离"二状态模型,建立了球面副间隙的运动学模型;然后基于Lankarani-Nikravesh接触力模型和修正的库伦摩擦力模型,利用拉格朗日方程建立了考虑球面副间隙的4-UPS-RPU并联机构的刚体动力学模型;利用数值仿真方法分析了考虑球面副间隙并联机构的动力学特性。研究结果表明,球面副间隙对机构动平台质心点的加速度和碰撞力有较大影响,而且球面副间隙值越大,对机构动态特性的影响越明显。本研究为预测球面副对机构动力学行为的影响,掌握含间隙并联机构的实际动力学行为以及间隙补偿控制提供了理论依据。  相似文献   

18.
提出了一种以新型三自由度冗余驱动并联机构4-PRP作为定位模块,串联上三自由度并联机构3-UPSPU来共同实现六自由度运动的新型混联机床的机构设计方案。首先,运用螺旋理论分析了该机床实现3T3R运动原理,计算出该机构的自由度。然后,利用解析矢量法及几何关系建立机构位置逆解方程,运用影响系数法建立了一阶运动影响系数矩阵—Jacobian矩阵和二阶影响系数矩阵—Hessian矩阵,建立了完整的运动学模型。最后,应用MATLAB对逆解方程进行求解并利用ADAMS对求解结果进行仿真验证,验证了运动学模型的正确性及机构的可行性。  相似文献   

19.
以3-PRRR三自由度移动并联机构为例提出一种考虑杆件空间复合弹性变形(包括弯曲、拉伸和扭转变形)的过约束并联机构受力分析方法。提出并定义分支约束力螺旋系刚度矩阵,建立分支约束力螺旋系幅值与分支末端弹性变形之间的映射关系;然后结合动平台受力平衡方程推导得到了分支约束力螺旋系幅值的一般解析表达式,分析施加给动平台的约束力螺旋与运动副实际约束反力之间的内在联系,从而求解得到了驱动力和所有被动运动副的约束反力。基于ADAMS仿真软件提出了一种建立过约束并联机构受力仿真模型的方法,所建刚柔混合模型与理论模型完全一致,且仿真结果与理论计算结果的最大误差不超过2%,有效地验证了提出的过约束并联机构受力分析的正确性。  相似文献   

20.
针对4自由度2-RPaRSS并联机构,利用D-H变换矩阵法建立了机构运动学及单条支链的位姿误差模型,并由此得到了机构基于各运动副误差(制造误差、安装误差、磨损误差等)的动平台位姿误差模型;运用该误差模型对2-RPaRSS并联机构的进行了误差分析和计算,给出了机构驱动角对动平台位姿误差的影响情况;同时建立了单支链的误差辨识模型,并由NSGA2算法求得了各误差的近似最优解,通过误差补偿使并联机构的位姿精度得到明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号