首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
二氧化硅气凝胶作为一种新型轻质多孔材料,在航空、建材和医疗等领域具有巨大的应用前景。综述了二氧化硅气凝胶的制备工艺发展史,介绍了二氧化硅气凝胶的光学、热学、电学、声学和催化方面的性质,详细讨论了二氧化硅气凝胶的两种改性思路:硅源改性(包含单一硅源、复合硅源和功能性硅源)和掺杂改性(包含非金属材料掺杂和金属材料掺杂),展望了二氧化硅气凝胶的发展方向。  相似文献   

2.
介绍了纤维/SiO2气凝胶复合材料的制备方法,综述了纤维种类、纤维有关参数对复合材料最终性能影响的研究进展。指出与纤维相关的一些参数有着明显的交叉影响关系,在嵌入纤维过程中需重点处理好纤维相关参数之间的关系,还需着重关注任何可以导致SiO2气凝胶孔径增大的网络结构的因子,为SiO2气凝胶复合材料在隔热领域中的研究和应用提供了参考。  相似文献   

3.
二氧化硅(Si O2)气凝胶是一种由SiO2粒子堆积而成的具有三维多孔网络结构的纳米材料,具有低密度、低热导率、高比表面积和高孔隙率等特点,在众多领域应用价值巨大而备受关注。Si O2气凝胶的疏水改性直接关系到其在制备或使用过程的结构稳定性。文章介绍了SiO2气凝胶疏水改性常用的两种方法:表面改性法和原位改性法,并且重点展示了SiO2气凝胶复合材料在隔热、催化、吸附、电化学等方面的最新研究进展。  相似文献   

4.
探究了二氧化硅气凝胶的成型机理和制备方法的差异对气凝胶性能的影响,阐明现阶段二氧化硅气凝胶高温条件下结构坍塌、性能衰减的原因及其在吸附、建筑保温等领域的应用效果。  相似文献   

5.
二氧化硅气凝胶以其独特的纳米孔结构展现出优异的性能,并在很多领域得到较好的应用。选择不同的硅源既有成本因素,又有性能要求,总的原则是优化气凝胶的结构和性能,拓展其应用领域。单一硅源主要有水玻璃和各种硅醇盐。复合硅源则可以引入疏水性和功能性基团,从而使二氧化硅气凝胶的结构性能得到改善,制备工艺过程更为优化。对二氧化硅气凝胶硅源选择的研究现状和前景做了系统探讨。  相似文献   

6.
二氧化硅气凝胶具有高孔隙率、低热导率等特点,使其成为新型超级隔热材料。然而,二氧化硅气凝胶的柔韧性、整体性差,并且常温干燥制备的气凝胶在高温时热导率迅速上升,这些都大大限制了二氧化硅气凝胶的应用。近些年,通过原位溶胶-凝胶法和模压成型法制备得到的二氧化硅气凝胶复合隔热材料,在一定程度上提高了其韧性、整体性和高温隔热性能,使得二氧化硅气凝胶作为单独块体隔热材料成为可能。本文阐述了二氧化硅气凝胶隔热材料的隔热机理,综述了近年来抗辐射型、纤维增强型和聚合物增强型二氧化硅气凝胶复合隔热材料的研究现状,最后讨论了该领域今后研究趋势。  相似文献   

7.
二氧化硅气凝胶因具有低密度、高比表面积、稳定的物理化学性质等特性在吸附分离、隔热保温等领域表现出巨大的应用潜力。但长耗时、高成本的制备工艺限制了它的发展,尤其是湿凝胶向气凝胶转变的干燥工艺。本文介绍了二氧化硅气凝胶在常压干燥的过程中面临的主要难点及解决方法,虽然常压干燥方法工艺简单、过程安全、对设备要求低且可连续制备,成为近年来的研究热点,但也存在制备周期长、体积收缩大、需要消耗大量有机溶剂和改性剂等不足。文中从凝胶基体增强与优化、降低毛细管力与减少不可逆收缩两种角度,介绍了二氧化硅气凝胶常压干燥的改进方法及其发展现状,分析归纳了不同改进方法的优缺点,总结了二氧化硅气凝胶常压干燥目前面临的技术挑战。并且,立足于目前二氧化硅气凝胶基体增强和表面改性技术发展的趋势,对今后二氧化硅气凝胶常压干燥过程中结构可控、成本降低以及产品多功能化的发展路线进行了展望。  相似文献   

8.
柔韧性二氧化硅气凝胶的研究进展   总被引:2,自引:0,他引:2  
本文综述了柔韧性二氧化硅气凝胶制备的最新研究进展,介绍了最常用的制备方法和干燥工艺,并对所制得样品的结构与性能的关系进行了阐述.目前,柔韧性二氧化硅气凝胶的制备方法主要有两种:一种是采用衍生法,用来制备纯的气凝胶;另一种是交联法,可以制备聚合物交联的气凝胶.超临界流体干燥是目前最常用的干燥工艺.  相似文献   

9.
氧化锆气凝胶以其优异的性能受到人们广泛的关注。本文综述了氧化锆气凝胶的制备工艺、掺杂改性工艺、SiO2-ZrO2复合气凝胶、纤维增强氧化锆气凝胶的研究进展以及氧化锆气凝胶的应用。最后,对氧化锆气凝胶的发展方向进行了探讨。  相似文献   

10.
纳米二氧化硅气凝胶隔热材料的研究进展   总被引:1,自引:0,他引:1  
作为一种超级隔热材料,二氧化硅气凝胶具有极高的孔隙率和极低的热导率。着重介绍了纳米二氧化硅气凝胶隔热材料的类型以及制备方法。常见的制备方法为先制成纳米孔气凝胶的颗粒和粉料,再掺入增强纤维和黏结剂,经二次成型制成复合体。分析了二氧化硅气凝胶复合隔热材料存在的问题,简要介绍了最新的改进技术,提出今后研究的主要目标,即通过廉价原料制备出较低密度下有良好强度和热导率的气凝胶复合材料,最后对其研究前景进行了展望。  相似文献   

11.
二氧化硅气凝胶具有低密度、高孔隙率、高比表面积、低导热率、物化性能稳定等特点,广泛应用于隔热、隔音、催化传输、吸附过滤、光电子等领域。介绍了以稻壳灰、粉煤灰和多晶硅副产四氯化硅等固废资源为硅源,采用喷雾冷冻干燥和燃烧干燥等技术制备二氧化硅气凝胶及复合体作为吸附材料和催化材料应用的研究进展。  相似文献   

12.
以自制的硅溶胶为原料,通过三甲基氯硅缈六甲基二硅氧烷(trimethylehlorosilsne/hexamethyldlsiloxane,TMCS/HMDSO)混合液对制得的水凝胶直接进行表面改性,用乙醇洗涤以后,在常压条件下干燥后得到疏水的SiO2气凝胶。研究表明;当溶胶液pH值从3变到5,最终得到的气凝胶的密度随pH值的增大逐渐减小到最低点后又有所增大,而气凝胶的比表面积则呈相反的变化趋势。当改性剂TMCS/H20的摩尔比大于0.1时,最终可得到疏水的气凝胶,当其大于0.2后气凝胶的密度和疏水性变化不大。Si02气凝胶密度和比表面积分别在100-160kg/m^3和539-720m^2/g范围。  相似文献   

13.
以自制的硅溶胶为原料,通过三甲基氯硅缈六甲基二硅氧烷(trimethylehlorosilsne/hexamethyldlsiloxane,TMCS/HMDSO)混合液对制得的水凝胶直接进行表面改性,用乙醇洗涤以后,在常压条件下干燥后得到疏水的SiO2气凝胶。研究表明;当溶胶液pH值从3变到5,最终得到的气凝胶的密度随pH值的增大逐渐减小到最低点后又有所增大,而气凝胶的比表面积则呈相反的变化趋势。当改性剂TMCS/H20的摩尔比大于0.1时,最终可得到疏水的气凝胶,当其大于0.2后气凝胶的密度和疏水性变化不大。Si02气凝胶密度和比表面积分别在100-160kg/m^3和539-720m^2/g范围。  相似文献   

14.
超细二氧化硅气凝胶的研制及生产   总被引:1,自引:0,他引:1  
本文综述了超细硅胶的制备方法,G.T.超细二氧化硅的研制,产品质量,生产情况及应用效果。  相似文献   

15.
简要明晰地介绍了纳米多孔二氧化硅气凝胶的制备、应用、发展等相关情况。  相似文献   

16.
二氧化硅气凝胶的制备和表征   总被引:1,自引:1,他引:1  
以正硅酸四乙酯为硅源,通过采取老化、表面修饰、溶剂置换和分级干燥等一系列抑制二氧化硅气凝胶干燥中出现缩裂的有效措施,以非超临界干燥技术最终获得了大块无裂纹的二氧化硅气凝胶。该气凝胶的孔径较小且分布均匀,比表面积为684m^2/g,孔体积可达1.38cm^3/g,最可几孔径为3.221nm,平均孔径达2.871m。同时在实验和理论分析的基础上总结二氧化硅气凝胶缩裂的主要原因和抑制缩裂的有效措施。  相似文献   

17.
研究了稻壳在盐酸中浸泡、煮沸、回流、干燥后,置于600℃燃烧,并保温2 h,制得了一系列二氧化硅气凝胶样品。重量法分析表明这些二氧化硅气凝胶中二氧化硅质量分数为99%以上,并采用了激光粒度仪、比表面测定仪(BET方法)、X射线衍射仪(XRD)、红外光谱仪(FT-IR)和扫描电镜(SEM)等研究了二氧化硅气凝胶样品,同时对使用稻壳能够成功制备二氧化硅气凝胶方法进行了探讨。  相似文献   

18.
超临界干燥制备疏水型二氧化硅气凝胶   总被引:3,自引:1,他引:3  
文章以正硅酸乙酯为原料,经溶胶-凝胶过程制备二氧化硅醇凝胶,采用三甲基氯硅烷作为表面改性剂,对醇凝胶进行化学表面修饰,超临界干燥,制备了疏水性二氧化硅气凝胶粉末。运用红外光谱、BET、扫描电镜、XRD对其结构、形貌及化学组成进行了分析。结果表明:该样品是表面连有疏水基团-CH3的疏水性SiO2气凝胶,呈连续网络结构的球状纳米粒子,孔径分布主要集中在2~4nm,是热稳定性较高的非晶、多孔、轻质介孔材料。  相似文献   

19.
李华  霍丽  张纷云 《广州化工》2012,40(14):54-56
以正硅酸乙酯为原料,先采用溶胶-凝胶法制备湿凝胶,然后浸泡在反应溶液中进行老化,再利用正己烷进行溶剂交换,三甲基氯硅烷进行表面改性,最终获得轻质多孔二氧化硅气凝胶。并通过正交试验,确定了制备凝胶的最佳工艺条件是:pH=5,TEOS∶乙醇∶水(摩尔比)=1∶4∶8;利用FTIR、XRD和SEM等方法对二氧化硅气凝胶改性特征和添加DCCA前后的物理性质进行表征。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号