首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用传统模型预测控制(MPC)的无人车难以同时保证路径跟踪精度和实时性,针对此问题,本文设计了一种采用状态扩展MPC与转角补偿的路径跟踪控制器。建立了车辆三自由度动力学模型,设计了基于状态扩展的双反馈MPC控制器,并根据车速调整控制器参数;建立了车辆-道路跟踪模型,根据车辆横向和航向偏差设计了转角补偿模糊控制器;利用MATLAB/Simulink和Carsim软件对所设计的路径跟踪控制器进行联合仿真分析。结果表明:相比采用传统MPC控制器的车辆,在中、低车速下,状态扩展MPC控制器的控制增量求解时间平均值降低14%以上,路径跟踪控制器跟踪道路的横向和航向偏差最大值分别降低23%和17%以上,具有较好的路径跟踪性能。  相似文献   

2.
针对采用传统模型预测控制器的车辆在弯道内跟踪精度难以保证的问题,本文提出了一种基于状态反馈的路径跟踪横向控制策略。基于车辆动力学模型,建立考虑轮胎滑移包络线约束条件的路径跟踪模型预测控制器,并根据车速选择合适的控制器时域参数;以车辆质心位置为控制点建立车辆跟踪误差模型,结合车辆当前位置横摆角偏差建立状态反馈调节器,通过LQR最优控制方法对无人车姿态进行校正。利用MATLAB/Simulink和Carsim软件对改进的状态反馈控制策略进行了仿真验证,典型双移线道路仿真试验表明:中低车速下车辆路径跟踪横向偏差降低了16%以上,横摆角偏差降低了33%以上,所设计控制器能够有效提高车辆路径跟踪精度,可保证车辆对变曲率弯道具有适应性和行驶稳定性。  相似文献   

3.
在智能车辆路径跟踪控制研究中,提出了一种位置误差控制器,由期望横摆角速度生成器和模糊PID控制器组成。建立车辆的运动学及位置误差模型,在当前车辆质心与目标路径预瞄点间实时规划虚拟行驶路径。分析车辆沿虚拟路径行驶时期望横摆角速度的变化率的计算,代入车辆行驶状态及目标跟踪路径信息得到期望横摆角速度生成器。将期望横摆角速度生成器与模糊PID控制器结合,以双移线道路为目标跟踪路径进行联合跟踪仿真。仿真结果表明跟踪偏差主要发生在曲线道路与直线道路连接处,且车辆在低速下跟踪精度较高,稳定性好,中高速时跟踪精度及稳定性都降低。  相似文献   

4.
为解决智能车辆的自主转向问题,提高车辆在高速运动过程中的转向精度和稳定性,在智能网联汽车的背景下,从路径跟踪控制出发,提出一种变参数的智能网联汽车路径跟踪控制方法。该方法基于模型预测控制原理,设计了一种智能网联汽车的路径跟踪控制器。该方法先以3自由度模型的车辆模型为控制系统;对系统进行线性化后,确定系统的二次型目标函数,并依据函数形式确定矩阵形式;然后,在Carsim和Matlab/Simulink平台上进行离线仿真,确定各个典型工况下适用于该路径跟踪控制器的仿真参数;最后实现系统可根据由车联网获得车辆实际所处道路形状和实际车速选择合适的路径跟踪控制器的控制参数,完成智能网联汽车的自动转向。仿真结果表明该控制器相对于固定控制参数的控制器具有更好的控制效果,可控制车辆以较高车速行驶时达到较高跟踪精度和行驶稳定性。  相似文献   

5.
非线性模型预测控制(NMPC)在车辆路径跟踪控制中的应用日益广泛,但目前的研究成果中尚未深入考虑预测时域和速度对车辆路径跟踪控制性能的影响。为此,分析了预测时域、速度与车辆路径跟踪控制性能之间的关系;采用三次多项式拟合获得了能够保证车辆路径跟踪横向误差小于0.1 m的最佳预测时域和参考速度的控制律;改进了用于车辆路径跟踪控制的NMPC控制器,且改进后的NMPC控制器的性能通过仿真进行了验证。仿真结果表明:改进后的NMPC控制器的横向误差在0.092 8 m以内,航向误差在0.072 4 rad以内。相比传统NMPC控制器,改进后的NMPC控制器将最大横向误差减小了4.267 1 m以上,将最大航向误差减小了0.392 7 rad以上,路径跟踪控制性能得到了较大幅度的提高。  相似文献   

6.
综合考虑智能电动车辆动力学方程中轮胎纵、横向力之间的耦合,使得纵向和横向控制器耦合在一个相互联系的控制结构中。纵向控制器基于串级控制结构,用于速度跟踪和力矩控制。基于纵向滑动率和控制力矩的虚拟控制律跟踪时变的纵向速度,设定时变控制矩阵的时变项边界从而获得纵向控制稳定的条件;提出一种跟踪期望横摆角横向控制方法,在车辆当前行驶位置和道路预瞄点之间实时规划逼近目标路径的虚拟路径。采用基于上界的滑模变结构策略跟踪期望横摆角,使车辆实现自动驾驶,参考速度由给定跟踪路径获得。横向控制基于静状态反馈控制、期望横摆角度控制及期望横摆角控制通过Matlab/Simulink仿真对比,验证了联合控制策略的有效性。  相似文献   

7.
提出了一种融合车辆稳定性的路径跟踪控制策略,以提高分布式驱动电动汽车在高速、低附着等危险行驶工况下的路径跟踪精度和车辆稳定性,该控制策略包括路径跟踪控制层、稳定性控制器决策层、驱动轮转矩分配层。针对LQR路径跟踪控制器在高速大曲率工况下跟踪精度不足的问题,采用闭环PID矫正驾驶员模型补偿车辆前轮转角,并设计稳定性控制器用以跟踪车辆理想参考模型,基于模型预测控制算法决策出附加横摆力矩,同时以轮胎负荷率最小为目标优化车轮驱动转矩分配。利用自主开发的分布式驱动电动试验车分别在高速高附着和高速低附着双移线工况进行试验。结果表明:相对于只运用闭环PID矫正的LQR路径跟踪控制器进行路径跟踪,车辆在干燥的混凝土路面以90 km/h速度行驶时,融合车辆稳定性的路径跟踪精度的横向均方根误差降低了29.7%;车辆在潮湿沥青路面以70 km/h速度行驶时,均方根误差降低了10.3%。所提控制策略能够提高车辆的路径跟踪精度,满足车辆在危险行驶工况下的横摆稳定性。  相似文献   

8.
为解决智能车辆进行变轨迹跟踪问题,基于传统的MPC(模型预测控制)控制器设计一种轨迹跟踪控制器,使所设计的控制器应用于智能车辆时能够先进行五次多项式的单行换道然后继续追踪一定半径的圆形轨迹行驶。采用二自由度车辆运动学模型,分析研究传统MPC控制器的设计原理,将二自由度车辆运动学模型进行线性、离散化处理得到线性误差方程;构建新的状态空间方程引入控制量的变化量,在此基础上进行迭代得到预测方程,利用这一时刻的状态量和控制量的变化量预测下一时刻的状态量。将求解这一时刻控制量的问题转化为二次规划问题,建立目标函数(代价函数),结合硬约束和软约束条件解得控制量,该控制量输入车辆模型得到新的状态量,进而得到新的误差方程,利用约束环节进行反馈校正,如此循环,逐渐追踪上参考轨迹。为防止求解最优解出现无解时能够继续进行计算,加入松弛因子得到新的能够适应变轨迹的MPC控制器。设计五次多项式的单行道换道轨迹与圆形轨迹的连续变轨迹,搭建Carsim-Simulink联合仿真平台进行实验,验证结果显示:该控制器应用于智能车辆时能够先进行单行道换道行驶然后继续进行圆形轨迹的变轨迹追踪,所设计的控制器具有新型可行性。  相似文献   

9.
在大多数智能车辆横向控制研究中,存在未考虑驾驶员误操作的影响这一不足。以人机共驾控制问题为研究对象,将驾驶员操纵转矩和车辆状态作为控制器输入。首先,建立转向系统和车辆二自由度模型,在车辆局部坐标系中,根据预瞄点曲率信息实现虚拟路径的规划,基于车辆状态和目标车道设计上层期望横摆角速度控制器。其次,将侧向风和驾驶员误操作作为干扰输入,以车辆状态中的横摆角速度、转向盘转角、转矩传感器测量值和期望横摆角速度作为控制器反馈变量,考虑车辆参数摄动及传感器测量噪声等影响,设计下层μ综合控制器,使车辆跟踪期望横摆角速度和期望的横向位移,确保车辆能稳定地跟踪目标路径。最后,进行自动换道和车道保持仿真,并基于Carsim/Labview的硬件在环试验台上进行硬件在环试验,仿真和试验结果均表明,提出的横向控制方法能辅助驾驶员更好的跟踪目标车道,且对侧向风和驾驶员误操作均有很好的干扰抑制性能。  相似文献   

10.
惩罚函数的构造及多模态平稳过渡策略   总被引:1,自引:0,他引:1  
为了使智能控制中多模态之间能够实现平稳过渡,结合一种多模态的划分方法,构造一类新的惩罚函数,并提出一种基于惩罚函数的多模态平稳过渡策略.通常,不同的控制策略针对不同的模态,而基于惩罚函数的多模态平稳过渡策略把不同的控制策略推广到所有模态,控制量是所有控制策略的加权,惩罚函数的作用是使与自己模态相对应的控制策略所含权值较大,另外模态的控制策略在此模态中所含权值都受到惩罚.最后,应用基于惩罚函数的多模态平稳过渡策略,在具有大进给力的纳米级驱动部件上进行试验,证明了所提出的平稳过渡策略的有效性.  相似文献   

11.
《机械科学与技术》2015,(9):1438-1441
考虑到模型跟踪控制时的车辆状态误差主要来自于初始状态和车辆参数的差异,针对仅存在初始状态差异的主动四轮转向车辆设计了最优控制,该控制策略能让其很快地跟踪上参考模型。针对两种差异同时存在的主动四轮转向车辆,采用最优控制设计了滑模面以消除因初始状态差异所导致的车辆状态误差,并在此基础上设计了分数阶滑模控制器以进一步消除因车辆参数差异所导致的状态误差。仿真结果表明:当主动四轮转向车辆和参考模型的参数不匹配时,也能很快地让控制车辆跟踪上参考模型。可见,采用最优控制设计滑模面的分数阶滑模控制是有效的。  相似文献   

12.
基于专家规则的自选择式多模态控制方法的研究   总被引:1,自引:0,他引:1  
目前模糊控制和PID控制等各种控制器对于非线性过程都各有其不足.文章提出了一种将模糊控制、PID控制和Bang-Bang控制相结合的、以专家规则为选择依据的自选择式多模态控制方法,在理论分析的基础上建立了多模态控制器的控制策略,并以非线性的切削加工过程为对象,进行仿真实验.结果表明,其超调量和调节时间明显优于模糊控制,超调量和控制器自身计算时间显著少于PID控制,而且此方法具有很好的鲁棒性.  相似文献   

13.
建立了基于主动悬架的高速列车悬架-座椅-人体的四自由度动力学模型,并对该列车模型稳定性的优化控制进行了研究。针对该座椅主动悬架模型设计了模糊控制器和复合P-模糊-PID的多模态控制器,应用Matlab/Simulink软件在相同的工况下进行仿真实验,并将两种控制方法下的仿真结果与被动悬架车辆模型的仿真结果进行对比分析。结果表明,相较于被动悬架车辆模型,上述两种控制方法下的主动模型座椅处的振动特性均得到了改善,达到了预期的控制效果,且多模态控制下的改善程度最佳;对高速列车乘坐舒适性的提高有着一定的理论参考意义。  相似文献   

14.
基于轨迹控制的AGV运动控制器设计研究   总被引:1,自引:0,他引:1  
对基于计算机视觉的AGV路径跟踪技术进行了研究,提出了基于轨迹控制的AGV运动控制器设计新方法,重点解决AGV路径跟踪效果与高速运动稳定性问题。首先对AGV工作环境与计算机视觉的特点进行分析,设计了适合AGV路径跟踪的图像处理流程。然后在深入分析两轮差速驱动运动平台的基础上,提出了基于轨迹控制的AGV运动控制器设计新方法。该控制器以AGV相对路径所处的状态量为输入,输出AGV控制指令——两轮的速度差和运动时间,从而控制AGV按指定轨迹运动,实现轨迹控制即AGV路径跟踪的目标。试验结果表明,AGV路径跟踪技术对直线和弧线具有较好的跟踪效果且AGV运动平稳。  相似文献   

15.
《机械科学与技术》2017,(5):767-772
传统转向系统对驾驶员误操作不能予以纠正,在驾驶过程中驾驶员需不断修正方向以消除外界或内部对车辆的扰动;主动前轮转向系统产生独立于驾驶员的附加前轮转角,改变车辆的横向受力状态克服传统转向系统不足。提出采用自抗扰技术的汽车主动前轮转向系统,根据系统的输入和输出动态跟踪理想参考横摆角速度,使车辆在横摆角速度安全裕度内运行。在MATLAB中实现了自抗扰控制器算法,控制CarSim车辆模型进行直线行驶抗扰试验和双移线试验,研究了自抗扰控制转向系统的抗扰动性能、路径跟踪性能以及对参数变化的鲁棒性,并与PID控制试验结果进行对比。试验结果表明,自抗扰控制的主动前轮转向系统改善了车辆操纵稳定性,具有抗干扰能力强、路径跟踪性能良好和鲁棒性强等优点,且各项性能优于PID控制器。  相似文献   

16.
为了保证自动驾驶汽车轨迹跟踪的精度及行驶过程中的稳定性,提出一种基于车辆横向稳定状态在线识别和模糊算法的变预测时域模型预测控制(MPC)方法。针对车辆稳定状态的在线识别,采用k-means聚类算法对车辆行驶状态参数进行聚类分析,得到聚类质心,通过在线对比当前车辆状态量与不同聚类质心之间的欧氏距离获取车辆的实时安全等级。同时计算出当前车辆的轨迹跟踪横向偏移量,以这二者为输入,通过模糊控制算法在线计算出预测时域的变化量并输出给MPC控制器实现预测时域的自适应调整,最后求解出自动驾驶车辆跟踪轨迹的最优的控制序列,以达到在保持车辆稳定的前提下实现高精度轨迹跟踪控制的目的。CarSim/Simulink联合仿真结果表明,改进后的变预测时域MPC算法在提高自动驾驶汽车轨迹跟踪精度及横向稳定性方面的表现优于传统MPC控制器。  相似文献   

17.
基于转角补偿的智能车辆循迹控制系统   总被引:1,自引:0,他引:1  
文中提出了一种转角补偿智能车辆循迹控制系统。系统由纯追踪控制器和转角补偿控制器组成。PP控制器直接控制车辆跟踪路径;转角补偿控制器基于PI控制理论,综合考虑行驶偏差及道路曲率进行转向角补偿,其参数采用模糊控制理论实现自适应调节,进一步改善系统跟踪性能。仿真和试验结果表明:较于传统PP循迹系统,该系统在不同车速下横向偏差峰值降低了50%以上,方向偏差峰值降低了20%以上,路径跟踪性能显著提升。  相似文献   

18.
为了提高全自动泊车系统的路径规划质量和跟踪精度,提出了微分平坦路径规划方法和非时间参考滑模的跟踪控制方法。分析了微分平坦系统原理,确定了车辆运动学模型的平坦输出,基于平坦输出量规划了泊车路径。分析了随时间单调递增的非时间参考量,建立了在非时间参考系下的路径跟踪误差模型;在非时间参考系下设计了滑模面和控制律,并证明了Lyapunov意义下的稳定性。经仿真验证可以看出,基于微分平坦原理可以规划出一条最优的泊车路径;同时使用PID控制器和非时间参考滑模控制器对泊车路径进行跟踪,PID控制器的最大纵向误差是滑模控制器的3.57倍,最大方位角误差是滑模控制器的1.67倍,证明了非时间滑模控制器对泊车路径具有更高的跟踪精度。  相似文献   

19.
针对具有非完整约束特性的多轴驱动车辆,分析多轴驱动形式下的转向几何关系及其运动学约束关系并建立动力学方程,采用基于制导路径跟踪理论的方法评价跟踪误差,推导消除误差所需的姿态角和路径参数更新公式;通过设计李亚普诺夫函数进行稳定性分析,证明了系统的全局一致渐进稳定性;采用非线性状态反馈精确线性化方法导出线性化的车辆动力学模型,在此基础上设计带有干扰观测器的滑模变结构速度跟踪控制器,并采用典型运动路径进行路径跟踪的仿真测试。仿真结果表明,所提出的跟踪控制策略能够满意地实现多轴驱动车辆对给定目标路径的跟踪。  相似文献   

20.
基于模型预测控制的UUV路径跟踪控制研究   总被引:3,自引:0,他引:3       下载免费PDF全文
水下无人航行器(UUV)的路径跟踪控制是实现UUV多种军、民用途的重要技术基础。针对UUV路径跟踪控制中的欠驱动、非完整约束、模型的非线性,基于非线性连续模型预测控制算法设计了UUV垂直面路径跟踪控制器。建立了垂直面运动模型并基于状态空间模型给出了垂直面预测模型,通过给定性能指标,运用泰勒级数展开与李导数求解出了连续时间状态下的最优控制律,实现了欠驱动UUV路径跟踪控制。通过仿真实验,验证了垂直面路径跟踪控制器设计的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号