首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
摘要:以碳酸乙烯酯和甲醇为原料,采用浸渍法制备了LiF/CaO催化剂,考察该催化剂在碳酸乙烯酯 (EC)与甲醇酯交换反应制备碳酸二甲酯 (DMC)中的催化性能。采用X射线衍射、N2低温吸附和哈米特滴定等对催化剂进行表征。结果表明,催化剂LiF/CaO在焙烧后生成新相CaF2和Li2O。在LiF负载量为20%(CaO的质量分数),焙烧温度为500℃,甲醇与EC物质的量比为10:1,催化剂用量为碳酸乙烯酯质量的0.1%,反应温度70℃,反应时间为0.5h的条件下,EC转化率、DMC选择性和收率分别为77.98%、99.97%和77.96%。  相似文献   

2.
倪蓓  许杰  薛冰  刘平  李永昕 《化工进展》2012,31(5):1061-1064
以硝酸镁为前体,通过等体积浸渍法制备不同负载量的MgO/NaY催化剂,用CO2-TPD和TEM对催化剂进行了表征,考察MgO负载量、反应温度、反应时间等条件对甲醇与碳酸乙烯酯(EC)酯交换反应合成对碳酸二甲酯(DMC)的影响。实验结果表明:MgO的负载量对催化剂表面的碱量和MgO分散程度有着重要影响。高分散的MgO物种越多,其催化剂碱量越高。采用12%MgO/NaY为催化剂、反应温度70 ℃、n(甲醇)∶n(EC)= 8∶1、反应时间3 h时,EC的转化率和DMC的选择性最佳,DMC收率高达89%。  相似文献   

3.
以廉价的Na2Si O3·9H2O为原料,通过简单的焙烧处理,制备了系列无水硅酸钠,并将其作为固体碱催化剂应用于碳酸乙烯酯(EC)与CH3OH酯交换合成碳酸二甲酯(DMC)的反应。采用TG-DTA、XRD和Hammett指示剂法对无水Na2Si O3进行表征。结果表明,焙烧温度对无水Na2Si O3的碱强度、总碱量及催化活性没有显著影响。当焙烧温度为200℃时,样品(Na2Si O3-200)的碱强度(Ho)为15.0~18.4,总碱量为10.9 mmol/g。以Na2Si O3-200为催化剂,考察了原料配比、温度和时间对酯交换合成DMC反应的影响。当CH3OH与EC的摩尔比为10∶1,在65℃反应2 h后,EC转化率与DMC收率可分别达到89%和88%。即使在室温条件下,Na2Si O3-200也能有效地催化EC与甲醇酯交换反应的进行。此外,经过4次使用后,Na2Si O3-200的催化活性没有出现明显下降的趋势。  相似文献   

4.
以γ-Al_2O_3为载体,用浸渍法制备出KOH/γ-Al_2O_3催化剂,利用X射线衍射、N_2吸附-脱附和红外光谱对催化剂进行了表征,以甲醇与碳酸乙烯酯(EC)的酯交换反应作为探针实验,考察了不同活性组分、浸渍方法、浸渍液浓度、焙烧温度等不同条件制备的催化剂对产物乙二醇(EG)收率的影响。实验结果表明,以KOH为活性组分,采用过量浸渍法,焙烧温度为500℃,浸渍液浓度为20%制备的KOH/γ-Al_2O_3催化剂活性最优,乙二醇的收率达到74.3%。  相似文献   

5.
张国强 《广州化工》2023,(20):59-61
对碳酸乙烯酯(EC)和甲醇酯交换反应进行研究,通过间歇法筛选出甲醇钠作为催化剂时反应效果最佳,在此催化剂基础上进行连续精馏反应,对影响连续精馏反应的温度、空速和催化剂用量等进行了工艺条件优化,得到在釜底温度80℃,EC与甲醇摩尔比为1∶13,催化剂用量0.3%,回流比(L/D)为3∶1,空速1.94 h-1,提馏段上部进料时,塔底EC转化率达98.7%,乙二醇(EG)选择性达99.9%,塔顶碳酸二甲酯(DMC)含量达28.2%,DMC选择性达99.9%,反应效果较好,为工业化应用提供基础。  相似文献   

6.
采用水热法制备了羟基磷灰石(HAp),用等体积浸渍法制备了系列碱盐改性的羟基磷灰石催化剂,在甲醇和碳酸丙烯酯(PC)酯交换合成碳酸二甲酯(DMC)反应中,K2CO3/HAp的催化活性最高。研究表明,该催化剂优化的制备条件是负载量为2mmol/g,焙烧温度为500℃,在催化剂用量为3%,n(PC):n(Me OH)=8.5,反应温度110℃,反应时间2.5h的条件下,DMC收率为60.42%,选择性为93.46%。而且,该催化剂易于分离,重复使用效果较好。对不同负载量、不同焙烧温度下制备的K2CO3/HAp进行了XRD分析,发现存在KHAp和Ca CO3晶相。  相似文献   

7.
以氧化石墨烯(GO)为载体,采用缩合与阴离子交换2步反应制备负载吡啶基碱性离子液体催化剂GO-[SPy]OH。通过FT-IR、TGA、XPS等手段对催化剂组成和结构进行表征,并考察了催化剂质量、醇酯摩尔比、反应时间、反应温度等工艺参数对酯交换合成碳酸二甲酯(DMC)反应的影响。结果表明,在催化剂质量为0.05 g、反应温度为90℃、甲醇/碳酸乙烯酯摩尔比为12∶1、反应时间为3 h的优化条件下,DMC的收率达到92%,选择性为100%。催化剂重复使用4次后仍能保持良好的催化活性。  相似文献   

8.
王培祥  沈卫华  陈小朋  方云进 《应用化工》2023,(12):3345-3348+3353
以Li为主要活性组分,采用沉淀法制备了LiAl催化剂,通过引入不同的金属元素(Mg、La、Ce和Y)对LiAl催化剂进行改性,同时对催化剂进行了XRD、TG-DTG、CO2-TPD和BET表征,考察LiAl摩尔比、焙烧温度对甲醇和碳酸丙烯酯(PC)酯交换合成碳酸二甲酯(DMC)反应活性的影响。结果表明,催化剂Li/Al摩尔比为3∶1,焙烧温度为500℃时,催化剂具有最高的反应活性。其中,LiYAl催化剂在反应条件为65℃,甲醇和PC的醇酯摩尔比为10∶1,催化剂用量为2%的条件下反应2 h, DMC的产率为59.2%,重复使用4次后,仍具有较高的产率。  相似文献   

9.
尚晓英  张洪伟 《工业催化》2014,22(9):715-718
在Al2O3载体上涂覆活性组分DMC11,采用浸渍法制备负载型ZnO-Al2O3催化剂,采用间歇式催化剂评价装置考察催化剂活性组分涂覆量、焙烧温度、反应温度和n(甲醇)∶n(尿素)对催化剂性能的影响。在焙烧温度700 ℃和活性组分涂覆质量分数50%~60%的最佳制备条件下,制得的催化剂堆积密度1.15 g·mL-1,比表面积85.3 m2·g-1,孔体积0.20 m3·g-1,孔径10 nm。在反应温度175 ℃、反应压力0.8 MPa和n(甲醇)∶n(尿素)≈35∶1条件下,碳酸二甲酯单程收率为15%。  相似文献   

10.
通过共价键接枝法制备以磁性氧化石墨烯为载体、咪唑盐型碱性离子液体为活性中心的负载型催化剂Fe_3O_4/GO-[bSIm]OH。通过FT-IR、TGA、XRD等手段对样品进行表征,考察了催化剂质量、原料摩尔比、反应时间、反应温度等条件对甲醇和碳酸乙烯酯合成碳酸二甲酯的酯交换反应的影响。实验结果表明,催化剂质量为0. 1 g、反应温度为90℃、n(Me OH)∶n(EC)=10∶1、反应时间为3 h时,DMC的收率达到95%,选择性达到99%。通过外部磁场将催化剂从反应体系中分离,重复使用5次后,催化剂仍能保持良好的催化活性。  相似文献   

11.
为利用碳酸乙烯酯固定的CO2,拓展碳酸二苯酯的合成方法,对碳酸乙烯酯酯交换合成碳酸二苯酯的反应进行了热力学分析,并考察了催化剂、反应温度、催化剂质量分数和反应时间对合成碳酸二苯酯的影响。结果表明:碳酸乙烯酯与苯酚的酯交换反应在热力学上是不可行的,而将苯酚乙酰化后可以实现由碳酸乙烯酯经酯交换合成碳酸二苯酯;不同催化剂催化酯交换反应时,n-Bu2SnO显示了最高的酯交换选择性。当反应温度为190℃,碳酸乙烯酯与乙酸苯酯的摩尔比为1∶2,n-Bu2SnO质量分数8%,反应时间10 h时,碳酸乙烯酯的转化率为15.1%,酯交换选择性64.2%,碳酸二苯酯的收率7.5%。  相似文献   

12.
碳酸丙烯酯/碳酸乙烯酯的制备技术研究进展   总被引:7,自引:0,他引:7  
介绍了碳酸丙烯酯/碳酸乙烯酯的研究现状,着重阐述了酯交换法、环氧丙烷/环氧乙烷与二氧化碳环加成法及尿素醇解法等制备方法.指出了尿素醇解路线是以尿素为原料.改变现有工业化路线对环氧化合物等石油化工产品的依赖,对开发天然气下游产品的利用具有重要的意义,且具有较好的工业化前景.  相似文献   

13.
碳酸钾催化酯交换合成碳酸二丁酯的研究   总被引:7,自引:0,他引:7  
研究了碳酸二甲酯(DMC)与正丁醇(n-BuOH)酯交换合成碳酸二正丁酯(DBC)的反应,筛选出合成碳酸二正丁酯的催化剂。考察了物料配比、温度和时间诸因素对反应的影响。结果表明,K2CO3具有较好的催化活性和选择性。得出了该反应最佳工艺条件:常压,反应温度140 ℃,反应时间4 h,n(DMC)∶n(n-BuOH)=1∶3。在催化剂用量为原料总质量的1%的条件下,DMC转化率为89.1%,DBC收率为86.9%,DBC选择性为97.6%,甲基丁基碳酸酯(MBC)收率为2.2%,碳酸二异丁酯(DIBC)的收率为70.0%,碳酸二叔丁酯(DTBC)收率为10.3%。  相似文献   

14.
Electrolytic characteristics of propylene carbonate (PC)ethylene carbonate (EC) mixed electrolytes were studied, compared with those in PC electrolytes. Conductivity and Li charge—discharge efficiency values increased with EC contents increasing. For example, 1 M LiClO4ECPC (EC mixing molar ratio; [EC]/[PC] = 4) showed the conductivity of 8.5 ohm?1 cm?1, which value was 40% higher than that in PC. Also, 1 M LiClO4ECPC([EC]/[PC] = 5) showed the Li charge—discharge efficiency of 90.5% at 0.5 mA cm?2, 0.6 C cm?2, which value was ca. 25% higher than that in PC. ECPC mixed electrolytes were considered to be practically available for ambient lithium batteries in regard to the high Li+ ion conductivity and also high Li charge—discharge efficiency.  相似文献   

15.
碳酸锂在碳酸钠溶液中的溶解度与热力学   总被引:1,自引:0,他引:1       下载免费PDF全文
戈海文  王怀有  王敏 《化工学报》2019,70(11):4123-4130
采用等温溶解平衡法开展碳酸锂在碳酸钠溶液中(278.15~358.15 K)的溶解平衡实验研究,测定平衡体系碳酸锂溶解度和平衡溶液密度,利用E-DH方程对碳酸锂溶解度实验数据进行关联,标准偏差小于0.01;利用Connaughton方程对液相密度数据进行关联,标准偏差小于2×10-3。实验和计算研究结果表明:在同离子和盐效应协同影响下,碳酸锂在Na2CO3-H2O体系中溶解度随碳酸钠浓度增加先降低后降低趋势变缓,在278.15~358.15 K温度范围内,溶解度转变折点为碳酸钠浓度约为0.1 mol·kg-1;通过溶解热力学计算,得到碳酸锂在碳酸钠中的溶解焓变(ΔHd)、熵变(ΔSd)和Gibbs自由能变(ΔGd),结果表明溶解过程为放热、熵减的非自发过程,溶解焓变和熵变随着碳酸钠浓度增加而增加,Gibbs自由能变在0.6 mol·kg-1出现最大值,且溶解过程为熵控制过程。研究结果将为卤水提锂碳化沉锂过程设计提供基础数据。  相似文献   

16.
张旭 《工业催化》2016,24(10):16-20
碳酸甲乙酯是一种重要的化工原料,市场潜力巨大。相对于传统制备方法,酯交换法制备碳酸甲乙酯具有明显优势。综述碳酸二甲酯酯交换反应合成碳酸甲乙酯的路线,对比碳酸二甲酯分别与乙醇和碳酸二乙酯进行反应的特点,表明碳酸二甲酯与乙醇反应需要解决产物分离的问题,而碳酸二甲酯和碳酸二乙酯酯交换反应则需要提高转化率。两种方法均具有良好的发展前景。  相似文献   

17.
介绍了碳酸二苯酯的各种合成方法及其应用。在各种合成方法比较的基础上,综述了碳酸二甲酯与乙酸苯酯酯交换法合成碳酸二苯酯的反应体系反应热力学及催化剂的研究现状,展望了碳酸二甲酯与乙酸苯酯酯交换反应体系的应用前景。  相似文献   

18.
超细碳酸钡和碳酸锶制备研究进展   总被引:1,自引:0,他引:1  
综述了超细碳酸钡和碳酸锶制备方面的研究进展。详细介绍了超重力技术、固相合成技术、微乳液技术等在粒子粒度控制方面的应用和进展,同时还详细介绍了在这些方法和技术基础上通过添加各种晶形控制剂等方法对粒子形貌的控制研究近况。对目前存在的问题作了具体的讨论和分析。存在的问题是对于控制粒子形貌的机理不清楚,以及形貌和粒度不能同时得到有效控制。这些均有待于更深层的理论和实践研究。  相似文献   

19.
It is shown that calcium carbonate can be sintered in the liquid phase at a low temperature (620–650°C). The sintering temperature is decreased by introducing lithium carbonate. It is established that the degree of crushing of the calcium carbonate for sintering is an important factor.  相似文献   

20.
阐述了碳酸二乙酯联产碳藏甲乙酯的工艺路线和开发过程,预测市场情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号