首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用沉淀-焙烧法制备了室温下对NH3具有高灵敏度和高选择性的rGO-SnO2纳米复合材料。利用X射线衍射(XRD),傅里叶红外光谱(FTIR),X射线光电子能谱(XPS),扫描电子显微镜(SEM),透射电子显微镜(TEM)和比表面积(BET)表征分析了纯SnO2与rGO(1.0%)-SnO2纳米复合物的属性。与纯SnO2相比,rGO(1.0%)-SnO2纳米复合物中SnO2晶体尺寸较小,约为6~20nm,比表面积更大,为33m2/g;rGO(1.0%)-SnO2纳米复合材料对0.01% NH3的灵敏度达到了49.6%,是相同NH3浓度下纯SnO2灵敏度的2.1倍,并且响应和恢复时间分别为21s和204s,比纯SnO2缩短了24s和10s,具有良好的重复性,选择性与稳定性;rGO(1.0%)-SnO2纳米复合材料优良的气敏性能是由rGO与SnO2产生的p-n异质结以及溶解的NH3电离出导电离子共同作用的结果。  相似文献   

2.
采用共沉淀与浸渍法制备了不同SnO_2掺杂量(摩尔分数1%~7%,以TiO_2计,下同)的SO42-/TiO_2-SnO_2固体酸催化剂,利用N2-吸附脱附、FTIR、NH3-TPD对催化剂的结构和性质进行了表征。结果表明:SnO_2掺杂可以有效改善催化剂的比表面积与孔结构,有利于载体与SO42-形成配位结构,显著增加了催化剂酸性中心数量,从而增强了催化性能。SnO_2掺杂量为5%的SO42-/TiO_2-SnO_2固体酸催化剂催化丙烯酸与莰烯酯化反应,催化剂用量为10%(占反应物的质量分数,下同),反应温度为70℃,丙烯酸与莰烯物质的量比为1.3︰1时,莰烯的转化率为81.9%,丙烯酸异冰片酯选择性为98.5%,较SO42-/TiO_2显示出更高的反应活性与稳定性。  相似文献   

3.
文章中,采用两步法合成了g-C_3N_4-SnO_2复合物。首先,通过热缩聚三聚氰胺来合成g-C_3N_4,再利用水热法合成不同质量比的g-C_3N_4-SnO_2复合光催化剂。利用X射线衍射(XRD),红外光谱(FT-IR),场发射扫描电子显微镜(FE-SEM)和紫外可见漫反射(UV-Vis-DRS)等手段对复合光催化剂进行表征。通过在可见光下检测降解亚甲基蓝(MB)水溶液来评估复合光催化剂的光催化活性。结果表明:复合光催化剂由SnO_2和g-C_3N_4组成,其在可见光区的吸收比纯SnO_2和g-C_3N_4有所提高。随着g-C_3N_4在复合物中含量的增多,光催化活性先增加后降低。其中g-C_3N_4含量为71.5%的复合物光催化活性最佳。其对MB的降解可达到34.4%。分别是纯g-C_3N_4和SnO_2的7.0和10.4倍。并且,通过对目标污染物亚甲基蓝的考察,研究了其光催化作用的机理。  相似文献   

4.
李辉 《热固性树脂》2020,35(3):24-27
以自制的氧化石墨烯(GO)为改性填料,采用原位聚合法制备了酚醛树脂(PF)/GO复合材料,通过X射线衍射仪、红外光谱、扫描电镜、热重分析及力学性能测试研究了产物结构,GO在PF中的分散以及GO含量对PF/GO复合材料性能的影响。结果表明,GO在PF基体中的分散度可达到微米级,且未与PF发生化学反应。适量引入GO,可有效提高PF的力学性能和热稳定性,当GO的质量分数为1.0%时,PF/GO的冲击强度和弯曲模量达到最大值7.15 kJ/m~2和19.57 GPa,分别比纯PF提高了14.04%和17.96%,当GO质量分数为1.5%时,PF/GO热稳定性最好,T_(5%)、T_(max)和800℃残炭率分别比纯PF提高58.3℃,8.2℃和2%。  相似文献   

5.
采用原位化学法合成不同质量比的SnO_2/还原氧化石墨烯(RGO)纳米复合材料,通过溶胶-凝胶法制得SnO_2/RGO纳米复合薄膜光阳极。经N3染料浸渍,与Pt对电极,I~-/I_3~-电解质组装成染料敏化太阳能电池(DSSC)。对SnO_2/RGO纳米复合薄膜光阳极结构进行分析,通过伏安特性曲线分析了电池的光电性能。结果表明:石墨烯有利于提高SnO_2基DSSC的光电性能。当GO与SnCl_2·2H_2O的质量比为0.20时,电池的性能最优,短路电流密度(J(sc))和开路电压(U_(oc))分别达到15.56 mA/cm~2和0.56 V,光电转换效率为4.58%。并研究了SnO_2/RGO复合材料对光阳极的电子传输和光电转换效率的影响机制。  相似文献   

6.
本文采用改进的Hummer’s法制备氧化石墨烯(Graphene Oxide,GO),通过软模板法合成SiO2空心球(Silica Hollow Sphere,SHS),将SHS附着在改性GO表面制备GO-SHS复合物,随后将GO-SHS复合物引入环氧树脂(Epoxy,EP)基体中制备GO-SHS/EP复合材料。结果表明,在GO-SHS/EP复合材料的最佳冲击和弯曲强度达到14.8kJ·m-2和112.3MPa,与纯EP相比,分别提高了196%和35.3%;在103Hz时,GO-SHS/EP复合材料介电常数和介电损耗分别为3.31和0.008。  相似文献   

7.
白艳  任宝利 《中国塑料》2013,27(5):69-72
分别将纳米三氧化二铝(Al2O3)、纳米二氧化钛(TiO2)、纳米二氧化硅(SiO2)颗粒和碳纳米管(CNTs)填充到环氧树脂(EP)/玻璃纤维(GF)复合材料中,制备了纳米填充EP/GF复合材料,GF的体积含量为30 %。用环块摩擦试验机研究了纳米填充物对EP/GF复合材料的摩擦磨损性能的影响。结果表明,1.0 %(质量分数,下同)的CNTs能够较大幅度地降低复合材料的摩擦因数和磨损率,而纳米Al2O3、纳米TiO2和纳米SiO2颗粒可以明显提高复合材料的耐磨损性能。  相似文献   

8.
通过改进的Hummer法制得氧化石墨烯(GO),而后通过静电自组装,将GO与经过多巴胺修饰的纳米ZrO_(2)粒子制得杂化纳米粒子ZrO_(2)-GO,最后通过原位聚合法制得ZrO_(2)-GO/酚醛树脂(PF)复合材料,对有关产物进行了结构表征和性能测试。结果表明:适量引入杂化纳米粒子,可明显改善PF的弯曲、冲击、摩擦性能和热稳定性,当杂化纳米粒子的质量分数为1.0%时,复合材料的弯曲强度、弯曲模量、冲击强度分别达到最大值78.75 MPa、3.88 GPa和14.74 kJ/m^(2),比PF分别提高了73.57%,52.75%和115.3%。当杂化纳米粒子质量分数为1.5%时,复合材料的摩擦系数降至0.92,比PF降低了26.9%。引入杂化纳米粒子后,PF的玻璃化温度、分解温度、残炭率均明显提高。  相似文献   

9.
通过冷压烧结成型工艺制备了纳米二氧化硅(SiO_2)填充改性聚四氟乙烯(PTFE)复合材料,探究了不同添加比例的纳米SiO_2/PTFE复合材料在不同转速下摩擦磨损情况。采用三维视频显微镜观察了样品的表面磨痕深度,借助扫描电镜观察摩擦表面形貌并分析磨损机理。结果表明,填充纳米SiO_2后的PTFE复合材料其摩擦因数虽有一定程度的升高,但其体积磨损率却大幅降低。且当纳米SiO_2填充质量分数为5%时,复合材料的体积磨损率降到最低,并在转速为80 r/min时较纯PTFE降低了89.5%。观察分析微观形貌发现,随着纳米SiO_2含量的增大,复合材料的磨损机理逐渐由犁耕磨损和黏着磨损向磨粒磨损转变,且当纳米SiO_2填充含量为10%时,出现轻微的疲劳磨损。  相似文献   

10.
采用液相法制备石墨烯/壳聚糖复合材料,将石墨烯按不同比例加入到百分比为2%(质量分数)的壳聚糖醋酸溶液中,用磁力搅拌6 h后再用超声处理20 min,使氧化石墨烯分散均匀,脱泡,将混合液倒在器皿内放在鼓风机中室温下烘干,即可得到比例为石墨烯含量为0.5%,1%,2%,3%,4%(质量分数)氧化石墨烯/壳聚糖纳米复合材料膜。利用做好的复合材料膜样品进行TG、红外、DSC、XRD、力学性能测试。结果表明:石墨烯加入到壳聚糖中表现出复合材料的热稳定性明显提高。其符合材料的熔点相对于纯CS也有明显提高。随着石墨烯的逐渐加入,CS/GO复合材料Tg也会增加。与纯壳聚糖和氧化石墨烯相比,在壳聚糖/氧化石墨烯纳米复合材料的光谱中,在1 550 cm-1处的—NH2吸收振动和在1 730 cm-1处的属于羧基的C=O伸缩振动两个峰都消失。石墨烯通过超声波处理,彻底剥离,形成单片层的石墨烯,在壳聚糖基体中分散良好。随着石墨烯含量的增加,CS/GO复合材料的杨氏模量和拉伸强度有明显的改善。但另一方面,在一定程度上使复合材料的断裂伸长率和韧性降低。  相似文献   

11.
采用石墨烯/聚吡咯(r GO/PPY)复合物制备超级电容器,以弥补二者各自的不足。采用改进Hummers法制备出氧化石墨烯(GO)。利用水合肼还原法将GO还原后得到r GO,同时采用电化学聚合法制备出PPY。最后,用电沉积法直接在不锈钢网上制备出r GO/PPY复合物。得到的复合材料的比电容为209.04 F/g,显著高于r GO的比电容(52.42 F/g)。另外,循环1 000次后,复合材料的比电容下降18.1%,低于PPY(36.3%)。  相似文献   

12.
采用水热方法制备了纳米金属氧化物SnO_2/石墨烯(RGO)复合材料,同时用相同工艺制备了纯SnO_2与纯RGO作为对比。SnO_2/RGO复合材料中SnO_2均匀分布在RGO结构中,晶粒尺寸约为5 nm,与合成的单相SnO_2相比晶粒尺寸显著减小。电化学性能测试表明,RGO、SnO_2和SnO2/RGO的首次可逆容量分别为339.3、862.7和1 054.2 m A·h/g,50次循环后容量分别为198.5、306.2和977.8 m A·h/g。SnO_2/RGO复合材料的可逆容量和循环稳定性比纯RGO和SnO_2有显著增加。电化学性能的提高归因于RGO的加入显著减小SnO2尺寸,提高了材料导电性,同时有效阻止了SnO_2团聚。  相似文献   

13.
《热固性树脂》2021,36(4):1-9
将纳米γ-Al_2O_3粒子加入氰酸酯树脂(CE)及环氧树脂(E-54)中,由二月桂酸二丁基锡(DBTDL)引发体系发生自由基聚合反应,制得CE/γ-Al_2O_3系列复合材料。采用示差扫描量热分析、电镜分析及力学、导热性、介电性和耐酸碱腐蚀性测试研究了纳米γ-Al_2O_3粒子用量对复合材料性能的影响。结果表明,无机纳米γ-Al_2O_3粒子的引入有利于CE基体树脂的聚合,其质量分数为10.0%时,复合材料DSC峰顶温度由280.9℃降至218.9℃,导热系数增大8.19倍,电绝缘性良好。其质量分数为6.0%时,复合材料弯曲强度、冲击强度分别达到165.36MPa,14.18 k J/m~2,较纯CE树脂提高了95.34%和62.24%,强酸腐蚀率为0.078%,较纯CE树脂下降42.8%。其质量分数为7.0%时,复合材料强碱腐蚀率为0.162%,较纯CE树脂下降64.8%。综合考虑,无机纳米γ-Al_2O_3粒子的最佳添加质量分数为6.0%。  相似文献   

14.
采用改进的Hummers法制得氧化石墨烯(GO),用溶剂混合法制备了环氧树脂(EP)/GO复合材料,对有关产物结构进行了表征,研究了GO含量对复合材料力学和热学性能的影响。结果表明:GO分子中存在含氧基团,其层间距约为天然石墨的2.24倍;当GO质量分数为1.0%时,EP/GO复合材料的拉伸强度和断裂伸长率均达到最大值,分别比EP提高了80%和69%,断裂面呈韧性断裂特征;当GO质量分数为1.5%时,EP/GO复合材料的玻璃化转变温度达128.4℃,比纯EP提高了7.8℃。  相似文献   

15.
将零维(0 D) Si 69改性的二氧化硅纳米颗粒(MS)和KH 550官能化的二维(2 D)多层氧化石墨烯(KGO)组成的纳米复合物通过胶乳法制备了天然橡胶(NR)纳米材料,研究了纳米材料的多尺度增强和界面强化。结果表明,通过MS和KGO表面活性极性官能团之间良好的H键相互作用形成了0 D/2 D杂化复合物(即MSKGO),后者与异戊二烯单元通过Si 69的硫化物相互作用和非极性相互作用与氧化石墨烯(GO)形成NRMSKGO的三维网络结构;在干燥和固化过程中,H键网络结构转化为共价键网络结构,同时GO部分转变为还原氧化石墨烯(RGO)。含有质量分数为3%GO的复合材料的200%定伸应力和拉伸强度分别提高9. 47倍和1. 36倍;仅使用10份含质量分数1%GO的复合材料替代10份NR制备的轮胎胎面,不仅使炭黑降低5份,且耐磨性和抗湿滑性分别提高了44. 5%和14. 6%,滚动阻力下降了5. 1%  相似文献   

16.
采用改进的Hummers方法制得氧化石墨烯(GO),利用硅烷偶联剂改性氧化石墨烯后经氨水还原得到硅烷化还原氧化石墨烯(KRGO),再与水性聚氨酯(WPU)预聚体复合得到KRGO/WPU复合物。采用FTIR、XRD、SEM、TEM、TGA和电子万用机对复合物的结构和性能进行表征。结果表明,KRGO/WPU复合物热稳定性较纯WPU有所提高,KRGO/WPU-1质量损失为5%时的温度(T5%)比WPU大约高20℃;随着KRGO质量分数的增加,复合材料的拉伸强度先增大后减小,当KRGO质量分数为0.5%时,KRGO/WPU复合物的拉伸强度达到最大值(20.2 MPa),较纯WPU(10.8 MPa)提高了187.1%;另外,KRGO/WPU复合材料疏水性能较纯WPU也有明显改善。  相似文献   

17.
针对低温冷链物流应用场合,提出一种由三羟甲基丙烷(TMP)、氯化铵(NH_4Cl)和水组成的新型有机-无机复合相变蓄冷材料。首先对该复合材料的不同配比进行DSC热分析实验,筛选出热力性能较优异的材料混合比(TMP∶NH_4Cl∶H_2O质量比为1.0∶2.0∶7.0)。其次,以上述配比的复合材料为基液,研究了添加不同的纳米粒子(三氧化二铝、二氧化钛、三氧化二铁)对其过冷度、热导率的影响,以及增稠剂(羧甲基纤维素(CMC)、聚丙烯酸钠(PAAS))对其相分离现象的影响,并进行了热循环实验。实验结果表明:添加0.40%(质量分数)的TiO_2纳米粒子对降低该复合材料过冷度效果最佳;添加0.50%(质量分数)的TiO_2纳米粒子对增大其热导率效果最佳;增稠剂CMC和PAAS可以消除该复合材料相分离现象并对其相变温度、相变潜热、过冷度等热物性影响较小。经优化所得最终复合相变蓄冷材料的配比为以1.0∶2.0∶7.0质量比混合的TMP-NH_4ClH_2O+0.40%(质量分数)TiO_2+1.0%(质量分数)PAAS,其相变温度为-19.9℃,相变潜热为246.8 kJ/kg,热导率为0.81 W/(m·K),并具有较好的循环稳定性。  相似文献   

18.
二维结构氧化石墨烯(GO)纳米片在高分子导热复合材料领域有良好应用前景,但常受限于片层间相互作用过大导致的局部团聚,不利于力学性能和导热性能的提高。借助GO纳米片表面和边缘提供的大量活性位点以吸附铁基催化剂,进而通过微波辅助合成方法在GO表面原位生长碳纳米管(CNTs)的策略,在数分钟内合成具有三维多层次结构的纳米杂化体(GO-CNT)。通过常规熔融共混方法,可获得GO-CNT在聚丙烯(PP)基体中良好剥离与均匀分散形态,明显不同于GO/PP复合体系中严重的局部团聚现象。均匀分散的GO-CNT对PP复合材料的力学性能和导热性能提升效果显著:在3%(质量分数)含量下,复合材料的屈服强度和热导率分别达到了38.0 MPa和0.76 W/(m·K),较纯PP增幅分别为20%和230%,明显优于传统GO改性复合材料。本研究为解决纳米片状填料在导热复合材料中的应用瓶颈提供了可行的结构设计策略和复合材料制备方法。  相似文献   

19.
本文以SnC_2O_4、GO、柠檬酸和尿素为原料,通过溶剂热和热处理相结合的方法制备出SnO_2纳米粒子/氮掺杂石墨烯复合材料(SnO_2NPs/NG)。用作锂电负极时,SnO_2NPs/NG复合材料在100 mA·g~(-1)的电流密度下循环100次后,其容量为1238 mAh·g~(-1),即使在8 A·g~(-1)的大电流密度下,其容量仍高达206 mAh·g~(-1),显示出了较好的循环和倍率性能。  相似文献   

20.
以十二烷基硫酸钠为改性剂对纳米二氧化铈(CeO_2)进行了表面改性,再经原位聚合法制备了聚对苯二甲酸乙二醇酯(PET)/CeO_2复合物母粒,将母粒与纯PET切片共混制备了不同CeO_2含量的改性PET,研究了CeO_2对PET流变性能的影响。结果表明:添加的CeO_2质量分数小于3%时,改性PET共混体系为非牛顿假塑性流体,在低剪切速率(r)区,体系的非牛顿指数(n)接近1.0,但在高r区(r大于4200s~(-1))体系的n远小于1.0,随CeO_2含量的上升,n略有增加;在相同剪切应力下,改性PET粘流活化能随CeO_2含量的增加,呈现先降低再逐渐增加趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号