首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对电动汽车的高速行驶稳定性问题,对四轮独立制动/驱动、四轮独立转向电动汽车进行了研究。提出了一种轮胎力优化分配控制算法,提高极限工况下车辆稳定性。首先,根据驾驶员的转向、制动/驱动输入,基于理想二自由度车辆模型算出横摆角速度、质心侧偏角的目标值,然后比较目标值与车辆实际值得出偏差,再根据目标值与实际值的偏差采用滑模控制计算出了所需的总横摆力矩、侧向力、纵向力。最后基于八自由度车辆模型,通过最优分配控制算法,计算出了每个车轮上需要施加的纵向力与侧向力。利用Matlab/Sinmulink与车辆动力学软件CarSim联合仿真验证了基于车辆稳定性的轮胎力优化分配效果。仿真结果表明,提出的轮胎力优化分配算法在高速急转向工况下能够使车辆保持理想的横摆角速度和质心侧偏角,提高了极限工况下车辆稳定性。  相似文献   

2.
为提高独立驱动电动汽车在极限工况下的稳定性,提出了基于神经网络PID控制策略的直接横摆力矩决策算法,控制质心侧偏角和横摆角速度并进行转矩分配。基于2自由度车辆模型的线性化特征参数与实际车辆控制目标的偏差,引入动量优化项对神经网络权值进行在线更新,计算出跟踪理想质心侧偏角和横摆角速度所需的直接横摆力矩,通过车辆前后轴动态载荷估计,考虑驱动电机饱和输出力矩和路面限制条件的约束,对各驱动轮进行直接横摆力矩分配。将算法应用于CarSim/Simulink联合仿真模型进行工况仿真实验。结果表明,该方法能够保证车辆在中速情况下于光滑路面紧急转向和紧急移线换道操作稳定性,以及在路面湿滑情况下高速超车快速并线的稳定性。  相似文献   

3.
针对四轮毂电机独立驱动汽车各轮力矩解耦可控的特点,分析车辆转向受力对四轮独立驱动电动汽车行驶稳定性的影响,提出四轮独立驱动电动汽车转向稳定性控制策略,为四轮独立驱动电动汽车四轮转矩协调控制,提升整车行驶稳定性提供了思路.基于模型跟踪控制的思想,采用分层控制思想设计控制器,控制器包含参考模型、顶层控制器、底层控制分配器.采用带质心侧偏角约束的2自由度车辆模型作为参考模型,设计出一种新的非线性联合滑模变结构主动控制的顶层控制器,该方法可以在一定程度上实现车辆横摆角速度和质心侧偏角的解耦控制,避免了横摆角速度和质心侧偏角的较大变化,从而保证汽车稳定性.在底层控制分配器中,采用基于轮胎稳定裕度最大化的最优分配方法.在Carsim软件中,搭建四轮轮毂电机独立驱动电动汽车模型,在Simulink软件中搭建控制策略模型.针对双移线工况,Carsim/Simulink联合仿真的结果表明,滑模变结构控制器具有较好的收敛性,控制分配模块可以实现四轮力矩的优化分配,能够提升车辆在极限工况下的稳定性.研究将为轮毂电机驱动车辆分布式协调控制提供理论支撑.  相似文献   

4.
为了降低电动车高速行驶时转向失稳带来的危险,提出了四轮转向与差动驱动联合控制策略以提高电动车转向时的高速稳定性。考虑轮胎非线性特性对整车的影响,在MATLAB中建立了电动车四轮转向与差动驱动联合控制下的整车动力学模型。以电动车转向过程中的质心侧偏角与横摆角速度为控制目标,采用模糊控制策略协调四轮转向与差动驱动进行联合控制,从而调节电动车的后轮转角和驱动力分配,使其质心侧偏角和横摆角速度能够跟随理想模型。通过仿真分析得到了转向时电动车的质心侧偏角和横摆角速度的动态响应。结果表明:在四轮转向与差动驱动联合控制下,可以将电动车质心侧偏角与横摆角速度控制在接近理想状态,从而提高电动车在高速时的转向稳定性并加快车辆的侧向响应速度。  相似文献   

5.
针对分布式电动汽车稳定性控制问题,提出了分布式电动汽车的横摆力矩控制与主动转向协调控制策略。采用分层控制的思想,输入信号层设计线性二自由度模型,根据车辆状态求解横摆角速度与质心侧偏角期望值。决策控制层应用模糊理论设计两输入两输出模糊控制器。分配执行层针对车速的不同设计四轮转向策略。选取单移线和双移线仿真工况,通过MATLAB/Simulink与CarSim联合仿真对控制策略进行了验证。结果表明:横摆力矩控制与主动转向协调控制策略能够有效改善汽车操纵稳定性和提高汽车行驶安全性。  相似文献   

6.
通过对汽车行驶状态的分析,分别在Simulink和CarSim中建立理想二自由度四轮转向汽车模型和整车模型。在Simulink中建立控制策略,以前轮转角比例控制的方式控制后轮转角;以车辆质心侧偏角和横摆角速度作为控制量,基于模糊控制理论,计算出所需附加横摆力矩,通过所设计的分配策略确定施加在前后车轮的制动力矩。利用CarSim和Simulink搭建联合仿真平台,进行低速角阶跃实验和高速单移线实验,并与前轮转向和其他控制策略下的仿真结果对比分析。仿真结果表明,所设计的控制策略使汽车的质心侧偏角和横摆角速度始终保持在理想值的附近,提高了汽车的灵活性和稳定性。  相似文献   

7.
以四轮轮毂电机驱动电动汽车为研究对象,针对车辆稳定性问题,提出了基于横摆角速度和质心侧偏角联合控制的横摆力矩模糊控制方法。确立了分层控制结构,上层控制器基于模糊控制理论得到控制所需的附加横摆力矩,下层控制器应用加权最小二乘方法并联合轮毂电机与液压制动系统进行力矩优化分配。实时仿真实验结果表明:联合轮毂电机与液压制动系统的优化分配控制策略有效提高了车辆的稳定性。  相似文献   

8.
根据电动轮式多轴汽车驱动力矩独立可控的特点,采用ADAMS/View建立五轴全轮驱动汽车的30自由度动力学模型,选择横摆角速度和质心侧偏角作为控制变量,基于PID控制算法,采用Matlab/Simulink建立整车双目标优化控制策略,控制内、外侧车轮的驱动力矩,实现整车操纵稳定性的最优。联合仿真结果表明,在进行角阶跃输入响应时,采用横摆角速度和质心侧偏角的联合控制策略,可在横摆角速度稳态值仅降低3%的情况下,使质心侧偏角稳态值降低14%,使汽车具有良好的轨迹跟踪性。  相似文献   

9.
汽车的横摆加速度过大会引起过度转向和过多不足转向等危险工况。采用线性二自由度车辆模型计算目标横摆角速度和目标质心侧偏角,运用卡尔曼滤波理论实时估算汽车的质心侧偏角并结合横摆角速度传感器对车辆稳定状态进行监测,提出了基于横摆角速度和质心侧偏角的ESP控制方法,着重介绍了ESP逻辑判断准则,应用Matlab/Simulink软件实现相应的电子稳定控制策略,同时利用AMESim软件中的15自由度整车模型建立AMESim-Simulink联合仿真模型,仿真结果验证了所提出的质心侧偏角估算的可行性及稳定性控制策略的有效性。  相似文献   

10.
提出了一种基于主动前轮转向横摆稳定性控制方法,以横摆角速度和质心侧偏角为控制目标。采用鲁棒性较强的模糊控制方法对汽车稳定性进行控制。建立了整车线性二自由度模型,以反馈系统中的误差信号及其变化率作为模糊系统的输入设计了模糊控制器,通过控制横摆力矩来实现车辆稳定性的控制。对转向盘阶跃输入信号和正弦输入信号两种工况分别进行了仿真研究。通过分析仿真结果,该控制方法能有效地控制车辆横摆角速度和质心侧偏角,提高车辆转向时的稳定性,同时能有效的降低驾驶员的操纵负担。  相似文献   

11.
为解决四轮独立驱动移动机器人在转弯时易出现不稳定的问题,并提高其转弯性能,针对一种四轮独立驱动移动机器人,根据移动机器人各车轮转矩可单独控制的特点,首先,运用达朗贝尔原理建立以质心侧偏角和横摆角速度为状态变量的四轮独立转向动力学模型,然后,运用直接横摆力矩控制方法,设计以质心侧偏角和横摆角速度为控制系统状态变量的指数趋近律动力学滑模控制策略,以使移动机器人质心侧偏角控制在稳定范围内,且其横摆角速度能够很好地跟踪移动机器人期望运动轨迹。最后,通过基于Matlab/Simulink进行转向行驶控制仿真试验,结果表明,与前馈反馈控制方法相比,基于所建立动力学模型所设计滑模控制策略有效改善了移动机器人的转弯控制稳定性。  相似文献   

12.
建立以四轮侧偏角为输入的四轮独立转向车辆二自由度动力学模型。以四轮侧偏角绝对值之和为最小值,构建包含前馈和反馈控制的性能指标函数。根据动力学模型静态表达式和理想横摆角速度,获得前馈控制约束条件。建立车辆控制模型和理想跟踪模型,获得反馈控制约束。利用优化理论进行控制器求解,并进行仿真分析,讨论了车辆横摆转矩的选取与作用。建立人-车-路闭环仿真模型,进行模拟道路实验和实车低速跟踪实验,验证了控制器可根据路面附着情况分配各轮转角,充分利用路面附着条件,保证轮胎侧偏角处于较好附着区域。实验表明,控制器具有良好的跟踪性和鲁棒性,进一步提高了车辆的操纵稳定性。  相似文献   

13.
考虑车辆在极限运动工况下转向时的横摆运动、侧向运动以及侧倾运动的影响,建立以质心侧偏角、横摆角速度、侧倾角和侧倾角速度为状态变量的三自由度线性车辆模型。为了实现车辆线传操纵(steer by wire),以车辆实际质心侧偏角和横摆角速度与理想模型的质心侧偏角和横摆角速度之间的误差作为控制器输入,建立滑模跟踪控制器。考虑到状态变量之一的质心侧偏角难以直接测量,设计了降维观测器以重构车辆状态。仿真结果表明,降维观测器跟踪性能良好,准确的重构了车辆状态;与不受控制的前轮转向车辆相比,所设计的控制系统使车辆的动态特性和操纵性能有效提高。  相似文献   

14.
针对车辆在轨迹跟踪过程中,尤其是高速转向等极限工况下,易出现车辆跟踪精度差和失稳的问题,以分布式驱动智能汽车为研究对象,提出一种考虑横向稳定性的轨迹跟踪协同控制策略。首先,建立车辆纵向、横向以及横摆运动的三自由度动力学模型,设计了基于模型预测控制的主动转向控制器,通过优化求解得到跟踪期望轨迹的最佳前轮转角。然后,采用滑模控制设计横摆力矩控制器,将横摆角速度和质心侧偏角作为联合变量,利用积分二自由度控制模型,计算车辆稳定的等效附加横摆力矩。最后,采用二次规划算法设计最优力矩分配控制器,以满足总的驱动力矩和附加横摆力矩的控制需求。仿真试验结果表明,控制系统在极限高速工况下,能够使车辆精确、稳定的跟踪期望轨迹。  相似文献   

15.
《机械科学与技术》2015,(8):1289-1293
提出一种基于直接横摆力矩控制(DYC)和前轮主动转向(AFS)控制的车辆稳定性联合控制方法。在车辆非线性模型的基础上,利用质心侧偏角和侧偏角速度相平面图,确定车辆的稳定域。对处于稳定域之外的非线性车辆首先进行DYC控制,使车辆进入稳定域,在此基础上再进行AFS滑模控制,使实际车辆的质心侧偏角及横摆角速度跟踪理想值。仿真结果表明:采用该联合控制方法,与单独采用AFS控制相比,更加有效地提高了车辆稳定性。  相似文献   

16.
基于滑模变结构控制的车辆稳定性研究   总被引:1,自引:0,他引:1  
直接横摆力矩控制(Direct Yaw Moment Control,DYC)能在极限工况下产生维持车辆稳定行驶所需的附加横摆力矩,从而提高车辆的主动安全性能。采用"Dugoff"轮胎模型,运用MATLAB/SIMULINK软件建立了十六自由度非线性车辆模型和二自由度参考模型,基于滑模变结构控制理论,分别设计了以横摆角速度为控制变量的DYC控制器和以质心侧偏角为控制变量的DYC控制器,并在极限工况下进行仿真。仿真结果表明:所设计的控制器能有效控制车辆的横摆角速度和质心侧偏角,提高了车辆的操纵稳定性。  相似文献   

17.
考虑了在电动前移式叉车装载货物转向行驶的情况下,其门架受载变形和货物升降共同引起叉车合成质心位置的变化,进而结合叉车合成质心变化模型和叉车三自由度模型建立了叉车动力学模型。针对叉车合成质心位置变化导致其转向稳定性不足的问题,根据零力矩点(Zero Moment Point, ZMP)理论分析了叉车行驶的稳定条件并得到了侧倾指标来判断车辆的稳定性。通过理想跟踪模型得到理想的叉车横摆角速度、质心侧偏角、车身侧倾角和侧倾角速度,以理想值与由叉车动力学模型仿真得到的实际值的差值为输入,设计了一种基于零力矩点的滑模预测控制(Sliding Mode Predictive Control, SMPC)算法,以调节叉车后轮转角的大小。仿真研究表明,在阶跃工况和双移线工况下,当货物升降速度不同时,与滑模控制(Sliding Mode Control, SMC)和无控制相比,基于ZMP滑模预测控制实现了对理想叉车横摆角速度和质心侧偏角的实时快速跟踪,提高了叉车的稳定性。  相似文献   

18.
《机械科学与技术》2016,(9):1414-1420
为了提高轮边驱动电动汽车行驶的稳定性,提出横摆力矩滑模控制的稳定性控制策略,采用层次化结构的稳定性控制器。针对极限工况下车辆的状态估计误差偏大,基于无迹卡尔曼滤波(UKF)理论设计了适用于轮边驱动电动汽车的状态估计方法,根据UKF估计的车辆状态计算,设计滑模运动控制器计算所需的横摆力矩。考虑到转矩分配时的实际约束条件,设计了控制分配器,采用二次规划方法优化分配各轮上的驱动/制动扭矩。仿真结果表明:该稳定性控制器能够快速施加驱动力或制动力,及时、准确地控制车辆的横摆角速度和质心侧偏角,提高车辆的操纵稳定性。  相似文献   

19.
提出直接横摆力矩与四轮转向集成的控制方案。建立了四轮转向半挂汽车列车的四自由度非线性动力学模型,以零侧偏角为控制目标确定半挂汽车列车牵引车后轮转角,以牵引车横摆角速度为控制变量,基于模糊PID控制技术设计了直接横摆力矩模糊控制器。借助Matlab/Simulink软件,对该集成控制器的有效性进行了验证。仿真结果表明,高速大转向时,该四轮转向直接横摆力矩集成控制器能得到较好的输出响应,牵引车质心侧偏角、横摆角速度,半挂车横摆角速度及牵引车与半挂车的中心线夹角响应均能很快稳定,可显著提高半挂汽车列车的操纵稳定性。  相似文献   

20.
为了增强车辆转向时的操纵稳定性,建立了包含侧向运动、横摆运动、侧倾运动三个自由度的四轮转向车辆三自由度动力学模型。以前轮转角和车速作为输入,利用模糊控制理论,建立了决策后轮转角大小的模糊控制器。最后运用Matlab/Simulink软件,进行前轮角阶跃试验,并与基于比例控制、反馈控制的四轮转向车辆进行对比仿真。仿真分析结果表明:所建立的四轮转向车辆后轮转角模糊控制器能够有效地缩短车辆到达稳定状态的时间,并能有效地减小质心侧偏角、横摆角速度以及侧倾角的稳态值,从而有效地提高了车辆中高速转向时的操纵稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号