首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is difficult to achieve Al/Cu dissimilar welds with good mechanical properties for medium-thick plates due to the inherent high heat generation rate at the shoulder-workpiece contact interface in conventional friction stir welding. Thus, double-side friction stir welding is innovatively applied to join 12-mm medium-thick 6061-T6 aluminum alloy and pure copper dissimilar plates, and the effect of welding speeds on the joint microstructure and mechanical properties of Al/Cu welds is systematically analyzed. It reveals that a sound Al/Cu joint without macroscopic defects can be achieved when the welding speed is lower than 180 mm/min, while a nonuniform relatively thick intermetallic compound (IMC) layer is formed at the Al/Cu interface, resulting in lots of local microcracks within the first-pass weld under the plunging force of the tool during friction stir welding of the second-pass, and seriously deteriorates the mechanical properties of the joint. With the increase of welding speed to more than 300 mm/min void defects appear in the joint, but the joint properties are still better than the welds performed at low welding speed conditions since a continuous uniform thin IMCs layer is formed at the Al/Cu interface. The maximum tensile strength and elongation of Al/Cu weld are, respectively, 135.11 MPa and 6.06%, which is achieved at the welding speed of 400 mm/min. In addition, due to the influence of welding distortion of the first-pass weld, the second-pass weld is more prone to form void defects than the first-pass weld when the same plunge depth is applied on both sides. The double-side friction stir welding is proved to be a good method for dissimilar welding of medium-thick Al/Cu plates.  相似文献   

2.
Dissimilar welded joints of reduced activation ferritic/martensitic (RAFM) steel and 316L austenitic stainless steel were prepared by friction stir welding with different butt joining modes and welding parameters. The weld quality of the joint was improved by placing the 316L steel on the advancing side and the RAFM steel on the retreating side, and using a relatively high rotational speed of 400 rpm. The microstructure of the stir zone on the 316L steel side consisted of single-phase austenite, and the microstructure of the stir zone on the RAFM steel side mainly consisted of lath martensite and equiaxed ferrite. A mechanical mixture of the two steels and diffusion of Cr and Ni could be detected near the bonding interface. Diffusion of Ni from the 316L steel to the RAFM steel resulted in the formation of a dual-phase structure consisting of austenite and ferrite. The as-welded joints showed good strength and ductility at room temperature and 550 °C, which were nearly equal to those of the 316L base material. The heat-affected zone on the RAFM side had the lowest impact toughness throughout the weld with a value of 13.2 J at - 40 °C, ~ 52% that of the RAFM base material.  相似文献   

3.
采用搅拌摩擦焊对AZ91D镁合金进行焊接试验,研究了搅拌摩擦焊接头的组织与性能.结果表明,当转速为1 000~1 400 r/min、焊速为50~150 mm/min时,均可得到表面成形良好、内部无孔洞和隧道的焊缝;焊接区与母材组织差异极大,焊接区形成细小、均匀的再结晶组织,具有锻造组织特征;热影响区为部分再结晶组织,再结晶晶粒沿原铸造晶粒的晶界生长;对接头进行拉伸试验,断裂发生在母材处,表明接头的抗拉强度高于母材.  相似文献   

4.
In this work, the influence of the Zener-Hollomon (Z) parameter on the microstructure and mechanical properties of copper subjected to friction stir welding (FSW) was investigated. Liquid N2 cooling was conducted to control the cooling rate after the FSW. The obtained results demonstrate that the Z parameter was dependent on the tool rotation rate during the FSW, i.e., a higher tool rotating rate resulted in a lower Z parameter. The grain size in the stir zone decreased with the increase in the Z parameter. The relationship between the yield strength and the Z parameter is established as σ0.2 = σ0 + kZn. This relationship exhibited two different plots under the conditions of air cooling and liquid N2 cooling. Even at a similar Z parameter, a significant yield strength difference occurred because massive dislocations, which were caused by the prevention of the post-annealing effect, were maintained in the stir zone. This study suggests that the influence of the post-annealing effect should not be neglected when analyzing the relationship between the Z parameter, microstructure, and mechanical properties.  相似文献   

5.
In this study, 2.4 mm thick high-strength martensitic steel plates with a tensile strength of 1500 MPa were friction stir welded at various welding speeds of 40, 60, 80, 100, 120 mm/min and a constant rotation speed of 300 rpm. Sound joints could be obtained when the welding speed was 40, 60 and 80 mm/min, while a kissing bond was found in the joint welded at 100 and 120 mm/min. It was revealed that the peak temperature exceeded AC3 (the end temperature at which all ferrite transformed to austenite when the steel was heated) for all the welding conditions and martensitic structures were finally formed in the stir zone of the joints. A significant decrease in hardness was located in the heat-affected zone, which had a transitional microstructure from tempered martensite near base metal to a mixed structure containing hard martensite, soft ferrite and bainite near stir zone. For the sound joints, the specimen was fractured in the heat-affected zone during tensile tests and the highest tensile strength could reach about 1058 MPa.  相似文献   

6.
This study focuses on the microstructure and mechanical properties of the joints of Q235 mild steel, which was formed by the friction stir welding (FSW). The results indicated that, after the FSW, the heat-affected zone (HAZ) of the retreating side (HAZRS) and the HAZ of the advancing side (HAZAS) recovered under the influence of the heating cycle. The transformation of the phases in the thermo-mechanically affected zone (TMAZ) of the retreating side (TMAZRS), the stir zone (SZ) and the TMAZ of the advancing side (TMAZAS) generated the pearlite and acicular ferrite. The continuous dynamic recrystallization occurred in all the three zones, whereas the grains were refined. The SZ mainly consisted of D1, D2 and F shear textures, while the TMAZAS was made up of only the F shear texture. The fine-grained structure, pearlite and the acicular ferrite improved the hardness and tensile strength of the joint. Its ultimate tensile strength was 479 MPa, which was 1.3% higher than that of the base metal. However, the uniform elongation was 16%, which showed a decrease of 33%. The fracture was a ductile fracture with the appearance of dimples. Besides, the joints of the FSW showed an excellent bending performance.  相似文献   

7.
In this work, 20-mm-thick aluminum-alloy plates were joined via friction stir welding. The temperature gradient was reduced by reducing the surface welding heat input to achieve uniformity of the mechanical properties across the thick plate joints. The welding temperature was measured using thermocouples. The microstructures were observed via electron backscatter diff raction and transmission electron microscopy. The tensile properties of the samples sliced along the thickness direction of the j...  相似文献   

8.
X80 pipeline steel plates were friction stir welded(FSW) under air, water, liquid CO_2 + water, and liquid CO_2 cooling conditions, producing defect-free welds. The microstructural evolution and mechanical properties of these FSW joints were studied. Coarse granular bainite was observed in the nugget zone(NZ) under air cooling, and lath bainite and lath martensite increased signifi cantly as the cooling medium temperature reduced. In particular, under the liquid CO_2 cooling condition, a dual phase structure of lath martensite and fi ne ferrite appeared in the NZ. Compared to the case under air cooling, a strong shear texture was identifi ed in the NZs under other rapid cooling conditions, because the partial deformation at elevated temperature was retained through higher cooling rates. Under liquid CO_2 cooling, the highest transverse tensile strength and elongation of the joint reached 92% and 82% of those of the basal metal(BM), respectively, due to the weak tempering softening. A maximum impact energy of up to 93% of that of the BM was obtained in the NZ under liquid CO_2 cooling, which was attributed to the operation of the dual phase of lath martensite and fi ne ferrite.  相似文献   

9.
Ti–6Al–4V rods were butt-welded by rotary friction welding in this study. Additionally, the radial differences in microstructure and mechanical property of joints were investigated by hierarchy slicing method. The results displayed that the width of weld zone and heat-affected zone of joints became wider along radial direction. Meanwhile, the tensile strength of joints decreased gradually along the radial direction. According to the theoretical analysis, the temperature gradient and inhomogeneous forging pressure leaded to the radial differences. Through K-type thermocouples, the actual temperatures at different locations were measured, and the results were consistent with the theoretical analysis. Theoretically, the radial differences of rotary friction welding joint are an inherent phenomenon; thus, the size of weldment should be limited strictly below the corresponding critical size. In order to prevent radial differences from enlarging, the welding surface profile of weldment can be processed into oval shape, and a larger forging pressure can be used within the scope of the joint deformation allowed according to causes for radial differences.  相似文献   

10.
田党  李森  唐晓华  沈刚  惠永刚  蒋璐霜 《钢管》2012,41(5):28-35
对钻杆摩擦焊接焊缝及热影响区的组织和力学性能进行了观察和测定。结果表明,钻杆摩擦焊接焊缝及热影响区的结构共分为9个区;管体端热影响区的边缘区拉伸强度最低;焊缝的冲击功最低。建议对焊缝及其热处理工艺作进一步研究。  相似文献   

11.
The influences of pin offset on the formation, microstructure and mechanical properties of friction stir welded joint of Ti6 Al4 V and AZ31 B Mg dissimilar alloys were investigated. The results show that sound joints are obtained at different offsets. With the offset decreasing from 2.5 to 2.1 mm, the number of Ti alloy fragments is increased, and the stir zone(SZ) is enlarged and the grains in SZ become coarser. A hook-like structure is formed at the Mg/Ti interface and its length is increased with the decrease in pin offset. The Al element has an enrichment trend at the Ti alloy side near the Mg/Ti interface when the offset is decreased, which is beneficial to the bonding of the interface. An Al-rich layer with a thickness of 3–5μm forms at the offset of 2.1 mm. All the joints fracture at the interface and present a mixed ductile-and-brittle fracture mode. The joint tensile strength is increased with the offset decreasing from 2.5 to 2.1 mm, and the maximum tensile strength of 175 MPa is acquired at the offset of 2.1 mm.  相似文献   

12.
采用不同的顶锻力对AA5083-H112铝合金和T2纯铜进行了线性摩擦焊接,获得了无明显缺陷的焊接头,并通过扫描电镜、硬度、力学性能试验等方法研究了线性摩擦焊铝铜接头的微观组织和力学性能。结果表明,随着顶锻力的减小,摩擦效应增加,更多的铜颗粒渗入铝基体中;而随着顶锻力的增加,拉伸力学性能明显下降,这是由于较大的顶锻力会使摩擦过程的热输入量增大,从而在铝铜结合处生成层状的第二相Al_2CuMg,使焊接头的力学性能降低。  相似文献   

13.
Friction stir lap welding was conducted on 2 mm?+?2 mm sheets of aluminum alloy 2A12-T4. The plunge depth (PLD) was designed as 2.45-2.58 mm, which was varied in submillimeters as 2.45, 2.50, 2.53, 2.55, and 2.58 mm, and the axial force was recorded in the welding process. The results show that the PLD fluctuation in submillimeters causes significant variation in the axial force and affects the voids (i.e., Void I and Void II), hook, and effective sheet thickness (EST), among which Void I is the main factor that affects the EST. The fracture load-PLD function in the tensile shear test of the joints follows the rule of the EST-PLD function. An optimized PLD is approximately 2.55 mm, at which the EST reaches 1.71 mm, corresponding to a peak fracture load of 11.03 kN. Thus, a PLD of 2.55 mm is suggested with a tolerance of 0.02 mm, corresponding to a fracture load of 9.6-11.0 kN, i.e., within a fluctuation of 12%.  相似文献   

14.
Friction stir processing (FSP) was used to modify the microstructure and improve the mechanical properties and corrosion resistance of an Mg-Al-Ca alloy. The results demonstrated that, after FSP, the grain size of the Mg-Al-Ca alloy was decreased from 13.3 to 6.7 μm. Meanwhile, the Al8Mn5 phase was broken and dispersed, and its amount was increased. The yield strength and ultimate tensile strength of the Mg-Al-Ca alloy were increased by 17.0% and 10.1%, respectively, due to the combination of fine grain, second phase, and orientation strengthening, while the elongation was slightly decreased. The immersion and electrochemical corrosion rates in 3.5 wt% NaCl solution decreased by 18.4% and 37.5%, respectively, which contributed to grain refinement. However, the stress corrosion cracking (SCC) resistance of the modified Mg-Al-Ca alloy decreased significantly, which was mainly due to the filiform corrosion induced by the Al8Mn5 phase. SCC was mainly controlled by anodic dissolution, while the cathodic hydrogen evolution accelerated the SCC process.  相似文献   

15.
搅拌摩擦焊接技术是一种新型固相焊接技术,由于其独特的技术优势正被广泛地应用于铝合金等轻质合金板的焊接中。分析了基于液压伺服技术的搅拌摩擦焊接主轴力控制系统,推导得出主轴液压伺服系统的力控制数学模型,在MATLAB软件的Simu LINK模块中搭建控制模型,分别利用模糊PID和普通PID控制理论对控制模型进行仿真。分析仿真结果发现:模糊PID和普通PID控制方法虽然都能实现对主轴液压系统的力控制,但模糊PID控制不论是在响应时间、控制精度还是抗干扰能力方面都优于普通PID控制,并且通过实验验证了模糊PID控制的可行性。  相似文献   

16.
The influence of overlap multi-pass friction stir processing on the microstructure and the mechanical properties, in particular, strength, ductility and hardness of die cast Al–7Si–3Cu aluminum alloy was investigated.It was observed that increase in the number of overlap passes friction stir processing resulted in significant refinement and redistribution of aluminum silicon eutectic phase and elimination of casting porosities. The microstructural refinement by the friction stir processing not only increases the ultimate tensile strength from 121 to273 MPa, but also increases the ductility as observed by the increase in fracture strain from 1.8% to 10%. Analysis of the fractured surface reveals that the microstructural refinement obtained by friction stir processing plays a vital role in transforming the fracture mode from completely mixed mode to the ductile mode of the fracture with increasing number of passes. The change in the size, shape, morphology and distribution of eutectic silicon particles and elimination of the porosities are the main reasons for the increases in tensile strength and ductility due to friction stir processing.  相似文献   

17.
The objective of present work is to apply the friction stir processing(FSP) to fabricate functionally graded Si C particulate reinforced Al6061 composite and investigate the effect of Si C particle mass fraction distribution on the mechanical properties and wear behavior of Al6061/Si C composite. Regarding the obtained results in this work, with increasing Si C mass fraction, elongation decreased, but hardness enhanced. However, the optimized functionally graded composite with the highest tensile strength and wear resistance was achieved for composite with 10 wt% surface Si C. Also,the results showed that wear resistance and tensile strength decreased for composite with 13 wt% surface Si C, due to reinforcement particle clustering depending on high Si C mass fraction.  相似文献   

18.
Ultra-strong joints of pure Cu and Cu–30Zn alloy were obtained by friction stir welding under flowing water. The effects of heat inputting condition and material characteristics on the morphologies, microstructures and mechanical properties of welding joints were studied. Defect-free stirring zones of pure Cu and Cu–30Zn were characterized by onion-ringed structure and plastic flowing bands, respectively. Both low stacking fault energy and fast cooling condition contributed to the formation of small recrystallized grains less than 1 μm in stirring zones. The welding joints in both materials exhibited enhanced mechanical performances due to ultrafine-grained microstructure in stirring zones and disappearance of soft heataffected-zone. The technique of digital image correlation was used to study the tensile deformation behaviors of welding joints and verify the improved tensile properties.  相似文献   

19.
Mg-2Al-1.2Ca-0.2Mn(at%)-based alloys with Ce-rich mischmetal(MM) substitution of 0–0.6 at% for Ca were hot extruded at 400 °C. The effect of MM substitution on the microstructure and mechanical properties of the extruded alloys was investigated. The as-cast Mg-2Al-1.2Ca-0.2Mn alloy is mainly composed of a-Mg, Mg_2Ca and(Mg,Al)_2Ca phases and Al_8Mn_5 precipitates, whereas the substitution of MM brings about the formation of Al_(11)MM_3, Al_2MM phases and Al_(10)MM_2Mn_7 particles with the absence of (Mg,Al)_2Ca phase. The volume fraction of MM-containing phases increases with increasing MM contents. All of the extruded alloys exhibit bimodal microstructure comprising fine dynamically recrystallized grains with almost random orientation and coarse deformed grains with strong basal texture. Dense nanosized planar Al_2Ca and spherical Al–Mn phases precipitate inside the deformed grains. High tensile yield strengths of~ 350 MPa and moderate elongations to failure of 12% are obtained in all extruded alloys; the MM substitution induces negligible difference in the tensile properties at ambient temperature, while the highest MM substitution improves the strength at 180 °C due to the better thermal stability of the fragmented MM-containing phases.  相似文献   

20.
The aim of the present work is to investigate on the mechanical and microstructural properties of dissimilar 2024 and 7075 aluminium sheets joined by friction stir welding (FSW). The two sheets, aligned with perpendicular rolling directions, have been successfully welded; successively, the welded sheets have been tested under tension at room temperature in order to analyse the mechanical response with respect to the parent materials. The fatigue endurance (S–N) curves of the welded joints have been achieved, since the fatigue behaviour of light welded sheets is the best performance indicator for a large part of industrial applications; a resonant electro-mechanical testing machine load and a constant load ratio Rmin/σmax =0.1 have been used at a load frequency of about 75 Hz. The resulted microstructure due to the FSW process has been studied by employing optical and scanning electron microscopy either on ‘as welded’ specimens and on tested specimen after rupture occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号