共查询到17条相似文献,搜索用时 46 毫秒
1.
钝尾缘风力机翼型气动性能计算分析 总被引:4,自引:0,他引:4
钝尾缘风力机翼型有较好的结构和气动性能,是目前多被用于大型风力机叶片靠近轮毂区域的选定翼型.但钝尾缘翼型也有缺点,易产生大的脱流涡,这会降低叶片的气动性能.为了更好地研究钝尾缘翼型的性能,以了解其气动性能的降低能否与其结构性能的优化相匹配.采用计算流体动力学(Computational fluid dynamics,CFD)方法,对薄尾缘翼型S809和改进的钝尾缘翼型S809-100的性能进行模拟和对比,结果表明相对于薄尾缘翼型,钝尾缘翼型可以增大断面的最大升力系数和升力曲线斜率,并可以降低翼型污染对翼型升力影响的敏感度. 相似文献
2.
采用多目标遗传算法与类别形状函数变换(CST)方法相耦合的方法对翼型外形进行多目标优化设计,在攻角工作范围内,以实现高升阻比、低阻力为目标,最终得到一系列Pareto最优解集。采用指数混合函数法对优化后得到的翼型在尾缘处进行非对称加厚。通过求解二维雷诺平均纳维-斯托克斯方程(RANS)获得翼型的气动参数,结果显示:优化后的翼型与原始翼型相比具有更优的压力分布,有效提高了升力系数,减小了阻力系数。优化翼型尾缘经过加厚处理后,所有攻角下的升力系数以及升阻比系数都得到了提高,流动情况进一步改善,涡心与失速点均有一定程度的后移,表明钝尾缘翼型具有比原始翼型和优化翼型更好的升阻力特性。 相似文献
3.
4.
风力机翼型气动噪声优化设计研究 总被引:8,自引:0,他引:8
为获得高升阻比、低噪声水平的风力机翼型,将气动噪声引入到风力机专用翼型的设计中.为评价翼型气动噪声水平,对翼型自身噪声进行讨论和研究,应用NASA基于大量试验而得到的翼型自身噪声模型进行建模.采用型函数扰动法对翼型廓线进行表示,以翼型自身噪声水平作为优化目标,将气动特性作为性能约束,建立翼型的优化设计模型.设计过程中,采用XFOIL获取翼型边界层参数,及对翼型的气动性能进行评价.将流场求解程序和直接优化方法相结合,采用复合形法进行搜索寻优,用Matlab编制优化程序.以NACA4415作为原始翼型进行优化设计,得到一种具有高气动性能、低噪声水平的风力机专用翼型. 相似文献
5.
风力机翼型设计通常未考虑湍流强度影响,气动设计与实际工况产生较大偏差,为使得翼型设计与实际工况相匹配,考虑随机湍流工况湍流强度大小的不确定性,以S809翼型为研究对象,分析低雷诺数下不同湍流强度对翼型S809升阻气动特性、压力分布影响规律,量化湍流不确定性对翼型气动性能的影响,提出一种在气动优化中耦合层流分离预测的高湍流低雷诺数小型风力机翼型优化策略,基于非嵌入式概率配置点法、TransitionSST模型、拉丁超立方试验设计、Kriging模型和非支配排序遗传算法进行气动稳健优化设计。案例结果表明,优化后翼型湍流适应性增强,在不确定湍流强度TI~N(0.15,0.037 52)工况下最大升阻比平均值提升了6.55%,标准差减小了13.49%。该方法使翼型设计与湍流风况相匹配,降低翼型对不确定湍流的敏感性,为不确定湍流工况低雷诺数翼型及小型风力机设计与应用提供重要参考。 相似文献
6.
Matlab优化工具在通用风力机翼型型线设计中的应用 总被引:1,自引:0,他引:1
基于Matlab软件中的优化算法和优化工具,针对风力机翼型通用型线集成表达式建立了优化数学模型.以风力机翼型的最大升阻比为优化设计目标函数,翼型形状控制方程的系数为设计变量,翼型的厚度和弯度为约束条件,设计得到了相对厚度为18%的风力机翼型,并对其性能进行了计算分析.研究结果拓宽了风力机叶片翼型的设计思路和设计方法. 相似文献
7.
以翼型型线的表达方法为基础,提出结冰条件下风力机翼型设计方法,并在典型霜冰条件下,基于原始翼型WT180优化设计出一种相对厚度为18%的风力机专用翼型ICE180。在自然转捩情况下,用Rfoil计算了ICE180、WT180及NACA63418三种翼型在不结冰以及霜冰条件下的气动性能;在结冰条件下,用计算流体力学(Computational fluid dynamics,CFD)方法对三种结冰翼型的气动性能进行验证。研究表明,相对于原始翼型WT180,新翼型ICE180既保持了无结冰条件下的良好气动性能,又在主攻角范围内,大幅提高了霜冰条件下的气动性能,且翼型前缘结冰厚度更小。故此,提出的翼型优化设计方法对于霜冰条件下的风力机专用翼型设计具有重要意义。 相似文献
8.
尾缘厚度对风力机翼型气动性能的影响 总被引:1,自引:0,他引:1
利用CFD软件对DU00-W-212翼型进行数值计算,验证了SST k-ω湍流模型在CFD数值计算中的合理性。通过Profili中的修型功能,分别增大翼型尾缘的上下翼面厚度。分析了在雷诺数Re=3×106情况下,尾缘厚度对气动特性的影响趋势及机理。 相似文献
9.
结合翼型泛函集成理论与叶片截面刚度矩阵数学计算模型,提出了风力机中等厚度翼型气动性能与结构刚度特性的一体化设计方法,实现了翼型气动性能与叶片截面刚度特性的同时提高。对考虑叶片截面铺层参数变化设计的WQ-B300翼型与DU97-W-300翼型进行了气动性能与结构刚度特性对比分析,结果表明:相比于DU97-W-300翼型,WQ-B300翼型的气动性能与叶片截面刚度性能均有显著提高,其挥舞刚度和摆振刚度分别提高了6.2%和8.4%,验证了该设计方法的可行性,给风力机中等厚度及大厚度翼型设计提供了一种思路。 相似文献
10.
11.
12.
13.
为了研究垂直轴风力机的叶片气动性能,利用流固耦合法模拟了垂直轴风力机在实际工况下的气动载荷分析,模拟结果表明,由于翼型后部较薄,受到的变形应力最大。为了避免因叶片变形而引起风力机整体气动性能下降,提出了通过加大翼型后部厚度的方案来提高叶片的强度,并通过数值模拟对改进后的翼型做了气动性能分析,得出了适当的增加翼型后部厚度,并不会对翼型气动性能造成太大的影响,验证了此方案的有效性。这些研究结论为今后垂直轴风力机的设计制造提供了一定的参考依据。 相似文献
14.
15.
翼型气动性能的优劣影响着风力发电机的发电效率,研究影响叶片翼型气动性能的因素具有重要意义。本文采用数值方法计算了文献中NACA0012翼型在Re=10^6时的气动性能参数并与试验值比较,验证了数值方法的正确性。通过对相对厚度、相对弯度、雷诺数等影响翼型气动特性的参数进行研究,结果表明:相对厚度小的翼型在小攻角范围可以获得更好的气动性能;当攻角大于失速角12°后,相对厚度大的翼型的气动性能更佳。在0°~20°攻角范围内,相对弯度和雷诺数越大,翼型的气动性能越好。 相似文献
16.
17.
风力发电机组的性能曲线是评价风能利用率的有效手段,是风力发电机组控制系统设计的基本依据。为提高风力发电机组风能利用率,在设计风力发电机组过程时,需要对机组气动性能进行评估。利用GH-Bladed软件的稳态分析功能,在动量理论模型的基础上,对2MW风力发电机组进行稳态情况下的气动性能进行了研究。仿真结果确定了影响风力发电机组风能利用率的主要因素,以及转矩、推力、转速等性能参数与轮毂风速的关系。研究结果表明,前期的参数设计符合理论标准,能够准确地描述该风力发电机组的运行特征,可作为后续风力发电机组优化设计的理论基础。 相似文献