首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
22MnB5热冲压钢具有良好的成形性能和较高的成形强度,在提高车身的碰撞安全性和减轻车重方面具有显著的效果,使其在白车身上的应用越来越广。本文介绍了22MnB5热冲压钢的发展现状,对22MnB5热冲压钢的材料特性、奥氏体化工艺及冲压成形性能的最新研究进展进行了概括,结合22MnB5热冲压钢的镀层技术介绍了其焊接、涂镀、耐蚀等性能的研究进展。探讨了22MnB5热冲压钢的优势及存在的问题,指出热冲压钢镀层技术是将来发展的重要方向。  相似文献   

2.
曾林林  杨达朋  易红亮 《轧钢》2022,(6):121-131
热冲压成形解决了钢材强度与成形性之间的矛盾,目前抗拉强度超过1 500 MPa的汽车零件只能通过热冲压工艺生产。为避免钢板在热冲压加热过程中的氧化与脱碳,通常在钢板表面涂镀一层Al-Si合金。结合Al-Si镀层热冲压钢的研究现状,综述了热冲压过程中Al-Si镀层微观组织演变及其对热冲压钢弯曲韧性的影响机理。奥氏体化加热过程中,Al-Si镀层与钢基体发生Fe、Al、Si元素相互扩散,镀层组织转变为由Fe-Al或Fe-Al-Si金属间化合物组成的多层结构,部分基体组织转变为富Al的α-Fe相互扩散层。Al-Si镀层通常会降低热冲压钢的弯曲韧性,目前学术界对Al-Si镀层降低热冲压钢弯曲韧性的原因尚未形成统一的认识,主要解释有:(1)镀层中裂纹尖端产生的应力集中促进了裂纹在基体的扩展;(2)奥氏体化过程中镀层与基体界面迁移导致的界面C富集使界面处容易产生裂纹。Al-Si镀层对热冲压钢弯曲韧性的影响机理以及提高Al-Si镀层热冲压钢弯曲韧性的方法尚需进一步研究。  相似文献   

3.
研究了不同轧制变形量条件下铝硅镀层热冲压用钢在热冲压淬火处理前后组织和力学性能的转变规律。结果表明,随着变形量的增加,试验钢镀层厚度逐渐减少,合金层发生破碎且程度逐渐加大,Al-Si镀层与基体接触面积增大。相同条件下热冲压淬火处理后,随着变形量的增加,镀层厚度逐渐减少,合金层重新连续分布于镀层和基板之间,且合金层厚度增加,基板中发现粗大的马氏体组织。未热处理试验钢拉伸强度、维氏硬度随着变形量增加而逐渐增加,但伸长率急剧减少,热冲压淬火处理后不同厚度试验钢均实现1500 MPa高强化,断裂伸长率随着变形量增加呈现逐渐降低的趋势。  相似文献   

4.
超高强钢板热成形工艺能够实现"白车身"轻量化的同时提高其防撞安全性,能很好地解决目前汽车制造业"节能"和"安全"两大问题。本文以1.8 mm厚的BR1500HS热成形钢板为研究对象,研究了淬火工艺对其淬火组织、奥氏体晶粒尺寸和力学性能的影响。其最佳奥氏体化工艺为920℃保温5 min,淬火后的显微组织为均匀的板条马氏体,其抗拉强度高达1789 MPa,延伸率达到7.5%,强塑积为1.34×104MPa·%。根据优化的淬火工艺进行的热压淬火试验研究表明,淬火后板材的组织主要为板条马氏体,压淬件的抗拉强度高于1500 MPa,完全满足BR1500HS钢热成形件的使用要求,具有重要的工程意义。  相似文献   

5.
随着汽车工业对轻量化和安全性要求的提高,热成形高强钢在汽车领域的应用越来越广泛。针对22MnB5钢在热成形过程中表面易氧化和脱碳的问题,通过热浸镀Al-Si镀层提高热成形钢的抗高温性能。结果表明:当浸镀温度为700℃、浸镀时间为5 s时,22MnB5钢表面Al-Si镀层厚度约为40μm,其中Al-Si镀层截面组织由铝基固溶体、Fe-Al-Si三元合金和Fe-Al二元合金相三层组成。相比于原始钢板,热浸镀Al-Si镀层的22MnB5钢的抗高温氧化能力大幅改善,在900℃保温时其氧化增重速率约为0.11g/(m2·min)。  相似文献   

6.
超高强度钢热流变行为   总被引:7,自引:0,他引:7  
热冲压成形工艺是将冲压成形工艺和淬火工艺集成在同一工序中进行的新型成形工艺。根据热冲压工艺的时间-温度特征,采用Gleeble3800热模拟系统,在温度600℃~800℃和应变速率0.01/s~0.5/s下,对热冲压钢板USIBOR1500进行热拉伸实验,获得了相应的应力-应变曲线,并利用最小二乘法进行多元线性回归,建立USI-BOR1500钢板的热变形抗力数学模型。结果表明,USIBOR1500钢的热变形行为符合应变硬化加动态回复机制,变形温度和应变速率对其力学性能有很大的影响,变形温度的影响更为强烈。在热变形情况下,USIBOR1500钢板的抗拉强度大幅下降。建立的数学模型与实验数据吻合较好。  相似文献   

7.
汽车采用超高强钢是实现轻量化兼顾安全性的必由之路,热冲压成形是高强汽车零件成形的关键工艺。近10年来,热成形钢及其零件制造技术迅速发展。本文从以下几方面对热成形钢/零件制造与使用现状进行了综述:(1)热成形钢材料(从传统MnB钢到最近新发布的一些热成形新钢种);(2)工艺(热成形传统工艺到工业4.0智能化生产);(3)热成形淬火配分(QP)创新工艺研究现状及形变热处理基本原理;(4)热成形过程的仿真模拟(热/力场、组织场、工艺等的模拟);(5)热成形零件的使用服役评价。并对今后热成形汽车钢制造与使用前景作出展望。  相似文献   

8.
超高强钢在减小车身质量的同时能保证汽车的安全性。热冲压成形超高强钢尺寸精度高、使用寿命长,已被广泛应用于汽车制造领域。目前热冲压成形钢常用的焊接技术为电阻点焊和激光焊接等。为避免热冲压成形过程中表面氧化和脱碳,通常在钢板表面预制Al-Si镀层。然而镀层的存在会导致焊接接头力学性能降低。概述了可热冲压成形的超高强度钢及其镀层技术、热冲压成形钢常用的焊接技术以及焊缝组织和焊接接头的性能,探讨了改善热冲压成形超高强度钢焊接接头性能的途径。  相似文献   

9.
通过有限元仿真软件Autoform分析了热冲压过程中工艺参数的变化对22MnB5马氏体钢B柱起皱、回弹、减薄、马氏体量以及强度的影响。结果表明:22MnB5马氏体钢B柱热冲压最优化工艺参数为加热温度930 ℃,冷却速率80 ℃/s。该工艺参数下,热冲压过程各处均完成马氏体转变,硬度分布均匀,材料减薄率较低,热冲压成形效果好,尺寸精度高,冲压件强度均大于1400 MPa。  相似文献   

10.
为满足新一代汽车对轻量化、节能和抗冲撞安全的需求,开发了一种新型先进热成形处理(AHFT)技术,以制造强塑积达15~30 GPa·%的超高强塑性汽车构件。基于先进高强度钢AHSS塑性化热处理技术和残余奥氏体相变诱导塑性TRIP效应,在传统热冲压成形后随即控制淬火冷却速率和温度,并进行贝氏体等温淬火处理(AT)或淬火-碳分配-回火处理(Q-P-T),使热成形淬火构件获得超高强度(抗拉强度不小于1.0 GPa)铁素体-残余奥氏体型的F-TRIP钢、贝氏体-残余奥氏体型的B-TRIP钢、马氏体-残余奥氏体型的M-TRIP(或Q-P)钢,可以显著提高热成形超高强度构件的伸长率和强塑性。这种先进热成形处理AHFT技术,可以采用22MnB5、TRIP钢、Q-P钢和Q-P-T钢为基础的化学成分,通过传统热连轧宽带钢机组或者短流程CSP薄板坯连铸连轧机组,生产热轧超薄(1.2~2.0 mm厚)酸洗板作为原料。先进热成形处理AHFT技术与短流程CSP相结合,生产超高强塑性汽车构件,是高效、节能、环保的短流程深加工技术,可以显著缩短汽车构件的整体制造流程,降低生产成本,大幅度减少汽车构件制造过程中和汽车使用过程中的CO2排放,并拓宽热成形构件产品的种类及其强度和塑性级别范围。  相似文献   

11.
Al-Si镀层热冲压用钢越来越多的被应用于汽车行业,为探究冲压前的再加热工艺对Al-Si镀层微观组织的影响,对22MnB5冷轧基板进行了热浸镀实验,利用扫描电镜、激光共聚焦显微镜、辉光光谱仪、电子探针、X-射线衍射仪研究了在不同保温温度下Al-Si镀层微观组织的演变规律。结果表明:随保温温度的升高,镀层Fe含量逐渐升高,其质量分数最高可达到50%以上,在900℃以上时Al、Fe的质量分数比基本固定;Al元素向Fe基体渗透的深度可达30μm;镀层中的物相包括Al-Fe二元合金相、Al-Fe-Si三元合金相。  相似文献   

12.
超高强度钢热变形方程   总被引:3,自引:1,他引:2  
热冲压成形工艺是将冲压成形工艺和淬火工艺集成在同一工序中进行的新型成形工艺。根据热冲压工艺的时间-温度特征,采用Gleeble3800热模拟系统,在温度600℃~900℃、应变速率0.01/s~0.5/s下,对热冲压钢板USIBOR1500进行热拉伸实验,获得了相应的应力-应变曲线。结果表明,USIBOR1500钢的热变形行为符合应变硬化加动态回复机制,变形温度和应变速率对其力学性能有很大的影响;计算了USIBOR1500钢的热变形激活能,并通过对变形激活能及Zener-Hollomon参数的研究,建立了超高强度硼钢热变形稳态流变应力模型和热变形方程,为估算成形时所需的最大载荷及设备选取提供参考。  相似文献   

13.
超高强度钢在提高汽车车身碰撞安全性和轻量化方面具有十分显著的优势,在汽车制造领域的应用也不断增多。超高强度钢板热冲压成形作为一种蓬勃发展的新技术,存在技术封锁和垄断。介绍了热冲压成形技术的研究进展,包括热冲压成形所用原材料的成分,微量硼元素的添加及其作用,典型热冲压成形工艺路线,热成形工艺控制的三要素,典型热成形钢制件在热成形前后的组织、性能及其相变特性,尤其是变强度热成形件的制造工艺技术和创新思路。探讨了各种变强度热成形工艺技术的创新点、优势及存在的问题。指出热成形技术是未来汽车轻量化发展的方向。  相似文献   

14.
对汽车车身用的22MnB5高强钢板在热冲压成形中的组织和力学性能进行了研究。结果表明:22MnB5钢板热冲压后,材料的微观组织由铁素体和珠光体转变为均匀的板条马氏体,且硼元素在热冲压过程中发生偏聚。热冲压可以极大地提高22MnB5钢的强度和硬度,降低材料的伸长率。  相似文献   

15.
热成形技术因结合热锻和冲压的技术优势,已经在汽车零部件制造工艺中获得了广泛的关注和应用。在热成形生产中,产品在高温下成形伴随非等温淬火过程容易出现起皱、破裂等成形质量缺陷。本文围绕高强度热成形钢板22MnB5材料相变过程、机械性能进行了相关研究,基于深冲盒试验进行热成形工艺改进优化,在热成形生产工艺过程中增加相应的转运冷却环节,使完全奥氏体化后的板料在冲压淬火前降低至优化冲压温度。实验表明:改进后的热成形工艺对冲压产品的成形性有明显改善,可有效降低和消除起皱、破裂等缺陷,材料微观马氏体转化更加细致充分,可获得抗拉强度达到1500MPa以上,硬度达到450HV以上的热成形产品,满足连续热冲压成形自动化生产过程工艺改进要求。  相似文献   

16.
通过电化学充氢和不同应变速率拉伸试验,研究应变速率对热冲压钢B1500HS氢脆敏感性的影响。通过微观断口形貌观测,分析不同应变速率下充氢热冲压钢断裂形式的差异,并进一步对其机理进行探究。结果表明,随着应变速率的降低,热冲压钢的强度和塑性损失量逐渐增加,说明慢应变速率下氢脆现象更加明显;慢应变速率下热冲压钢拉伸断口呈准解理状,而快应变速率下则呈现小韧窝状,其断裂形式呈现出由脆性断裂向韧性断裂的转变。分析其原因主要是在慢应变速率下,氢有足够的时间扩散至孔洞、夹杂等缺陷位置,从而促进裂纹的产生和扩展,导致其具有更高的氢脆敏感性。  相似文献   

17.
以经酸连轧后的34MnB5钢为原料,采用Gleeble3500热模拟试验机模拟退火试验,分析最佳退火温度,并进行不同热冲压工艺的平模淬火试验。研究退火温度、淬火温度对热成形钢组织与性能的影响。结果表明,退火温度为790℃时,条带状组织已基本消失,晶粒的等轴化程度较高,混晶现象明显改善,贝氏体晶粒组织细化,在基体内部均匀分布铁贝两相。退火温度为790℃,淬火温度为930℃,保温5 min时,显微组织为细小均匀的板条马氏体,综合力学性能最好,其屈服强度达到1353 MPa,抗拉强度达到2018 MPa,伸长率达到7.5%,且横纵向三点弯曲角均可以达到50°以上。  相似文献   

18.
《塑性工程学报》2015,(6):124-129
热冲压工艺能够使材料获得高达1 500MPa的抗拉强度,但是得到的制件塑性较差。将传统热冲压技术与淬火碳分配工艺(QP热冲压工艺)相结合,可有效提高热冲压零件的强塑积。将QP热冲压工艺应用于无硼富硅钢27SiMn,进行全马氏体转变和QP热模拟试验,通过拉伸试验、显微组织观察等方法,研究了淬火温度和碳分配时间对27SiMn钢力学性能和显微组织的影响。研究表明,QP热冲压工艺对于27SiMn钢,在保证制件具有超高强度的同时,可显著提高其延伸率,从而获得优异的综合力学性能。  相似文献   

19.
陈忠 《金属热处理》2022,47(10):228-233
利用粗糙度仪、扫描电镜、硬度计、辉光放电原子发射光谱仪等检测方法,研究分析了热冲压成形工艺过程中的加热温度对Al-Si涂层22MnB5热成形钢组织及性能的影响。结果表明,随着加热温度的升高,Fe沿垂直于表面方向由热成形钢基体向Al-Si涂层表面的迁移量逐渐增大,O沿垂直于表面方向由Al-Si涂层表面向热成形钢基体的迁移量逐渐增大,且迁移的最大深度约为2.80 μm。Fe沿垂直于表面方向由热成形钢基体向Al-Si涂层表面的迁移量直接决定了Fe-Al-Si相的形态、生成位置及界面结合层厚度。随着加热温度的升高,Al-Si涂层表面粗糙度Ra、峰值计数Rpc值先增大后减小;当加热温度为930 ℃时,涂层表面粗糙度Ra达到最大值1.89 μm,峰值计数Rpc值达到最大值218。随着加热温度的升高,Al-Si涂层总厚度从27.78 μm增加至40.46 μm,界面结合层厚度从1.08 μm增加至15.11 μm。当加热温度为930 ℃时,热成形钢基体的硬度达到最大值505 HV0.2。  相似文献   

20.
新一代汽车对使用的超高强度钢材料提出了更高的要求,需要兼顾轻量化和更好的安全性能,材料的强韧性匹配是实现这一目标的重要途径。钢铁材料的强度越高,越容易发生脆性断裂。通过成分设计优化和合理的热处理工艺匹配可以有效提高材料的强韧性,减少事故发生。本文综述了热冲压成形钢、淬火延性钢和冷成形马氏体钢的研究发展,总结了近年来超高强度钢的研究现状,为高强度、高塑性的先进钢铁材料的研制开发提供参考,并针对超高强度钢的优化控制思路提出介绍和建议。最后,从超高强度钢的生产应用、开发现状等方面对超高强度钢的发展趋势进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号