首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
对直齿圆柱齿轮的热边界条件进行计算,利用ANSYS Workbench对齿轮模型进行温度场分析。经试验验证仿真结果具有一定的可信性后进一步分析齿轮齿根的热应力及热变形。对比齿轮在结构场与热-结构耦合场不同啮合位置时的齿根应力结果,得到两种情况下的齿根应力的分布形式及数值大小均有明显差别。经分析得到热应力会改变对齿根应力的分布形式及齿根最大应力出现的位置,热变形对齿根应力值的大小产生明显影响。因此研究温度对齿根应力的影响具有一定的理论意义和实际应用价值。  相似文献   

2.
以某离心式压缩机齿轮-转子系统为研究对象,建立多平行齿轮轴ADAMS模型,从转速与啮合力两个方面验证了模型的有效性,并在考虑载荷以及偏差量的影响下针对轴线偏差故障进行了啮合力仿真分析。研究表明齿轮轴线平行度偏差对齿轮啮合力均值无明显影响,但引起其振动幅值的增大,加剧了非线性现象;负中心距偏差下啮合力振动幅值变大,正中心距偏差下啮合力振动幅值与载荷大小有关,但两种中心距偏差均没有引起啮合力频域成分和均值的明显变化。  相似文献   

3.
为了探析WN(Wildhaber-Novikov)齿轮传动的弯曲强度特征及失效原因,提出了基于WN齿轮多点啮合的齿根应力计算原理和方法。针对WN齿轮负载传动的点接触和弹性变形特征,建立了齿根弯曲强度分析模型。根据啮合过程中负载、啮合齿轮副和接触点数的变化进行了齿根弯曲应力的计算,利用有限元方法分析了啮合传动中螺旋角以及中心距误差等对最大齿根应力的影响,揭示了WN齿轮传动的失效原因和弯曲强度特征。通过齿根应力实验测试以及和渐开线齿轮的比较证实了本方法的可靠性。  相似文献   

4.
节能型起重永磁铁转轴采用齿轮齿条传动,考虑到其在低速重载工况下的主要失效形式为轮齿的折断,因此建立齿轮的三维有限元模型,并采用经典有限元软件ANSYS对其进行齿根弯曲强度的有限元分析,获得了轮齿啮合过程中不同时刻的最大弯曲应力与变形值。仿真结果表明:单个轮齿的齿根弯曲应力值与变形值随着啮合过程基本呈抛物线规律变化,其中在接近齿顶部位啮合时齿根弯曲应力最大。  相似文献   

5.
提出点线啮合齿轮齿根弯曲应力计算方法,修正了大齿轮的齿根弯曲应力计算公式,在公未中增加大齿轮弯曲强度提高倍数.通过有限元仿真和试验验证了点线啮合齿轮齿根弯曲应力计算方法,并得出点线啮合齿轮弯曲疲劳强度比渐开线圆柱齿轮至少要提高15%的结论.  相似文献   

6.
根据圆弧齿轮的啮合传动原理,在深入分析圆弧齿轮传动副轴线平行度误差与传动误差之间相互关系的基础上,研究了由于制造和安装造成的齿轮副轴线平行度误差,由此产生的齿轮副中心距偏差,从而导致齿轮副的传动误差问题,并推导出计算该传动误差的定量表达公式,利用该计算公式可以比较方便地计算出传动误差的数值。  相似文献   

7.
基于轮齿的变截面阶梯悬臂梁假设,综合考虑轮齿弯曲、基础变形、接触变形等因素,首先,建立了健康齿轮时变刚度的计算模型,利用解析法与有限元仿真对比研究,获得了健康齿轮啮合刚度的分布曲线;然后,基于线弹性断裂力学前提下的齿根裂纹扩展路径,建立了包含不同尺度裂纹的有限元模型;最后,针对不同长度的裂纹齿轮,计算获得了1.5个啮合周期内的刚度曲线,从而建立了裂纹尺寸与刚度劣化特性的影响关系。通过对比单、双齿不同啮合区内的劣化规律,表明单齿啮合区由于单齿承载,其劣化程度明显高于双齿啮合区。此外,啮入阶段与啮出阶段的双齿啮合区劣化特性也存在一定差异。  相似文献   

8.
为研究塑料直齿轮在动态啮合过程中的应力分布规律,运用ANSYS Workbench建立了塑料直齿轮啮合副的有限元模型,基于接触有限元法对塑料直齿轮的接触过程进行了仿真分析,得到了塑料直齿轮的动态接触应力与齿根应力的分布规律,然后利用该方法研究了在不同工作载荷下塑料齿轮的动态啮合规律。计算结果表明:有限元数值仿真结果与采用赫兹应力理论以及刘易斯方程所计算的塑料齿轮应力值相吻合,验证了该方法的正确性;同时还获得了工作载荷对塑料齿轮啮合传动的影响,为塑料齿轮的啮合特性分析提供可行的分析方法。  相似文献   

9.
针对传动系统整体分析的复杂性,以轴-齿轮-轴承组成的某附件机匣传动系统中的轴系结构为研究对象,基于接触理论和有限元方法对轴系结构进行了静态仿真,在考虑了装配误差因素的不同轴线平行度偏差的情况下分别对整体轴系结构、齿轮、轴承进行了对比仿真分析.仿真结果表明:随着齿轮轴不平行时误差的增加,轴系结构的等效应力也相应地增加,且齿轮应力变化较为明显,但轴承的应力变化较小,为传动系统在实际装配中齿轮、轴承的设计与优化提供了参考依据.  相似文献   

10.
基于齿轮的精确建模对数值仿真精度的巨大影响,采用APDL-Maltab的参数化建模编程技术,通过对齿廓曲线的推导,建立了比较精确的齿轮模型。提出跑合前载荷沿接触线呈线性分布和跑合后呈三次抛物线分布的模拟方法,进而推导出跑合前后齿向荷载的分布曲线。对均布荷载、线性分布和三次抛物线分布的非均荷载作用下,齿宽方向上齿根最大应力和啮合线上轮齿变形的变化规律进行了比较研究,验证了齿端刚度效应和齿根应力、轮齿变形的连续性。非均荷载下齿根应力和轮齿变形的数值模拟表明:齿向荷载的不均匀性和齿端效应,使得齿根最大应力增大,轮齿最大变形减小。上述研究对于优化齿形设计和改善齿向荷载分布等具有一定的理论价值。  相似文献   

11.
应用圆弧齿轮的啮合原理,研究了双圆弧齿轮传动的轴线平行度误差和其传动误差之间的关系,据此分析了不同方向的轴线平行度误差、螺旋角等对其传动误差的影响情况。  相似文献   

12.
斜齿轮啮合过程齿根应力的实验研究   总被引:1,自引:0,他引:1  
刘更  蔺天存 《机械传动》1994,18(1):39-44
本文提出了一种可用于测量斜齿轮副啮合过程齿根应力和变形的静态加载实验装置,给出了实验台设计程序。按文中所提设计原理及程序可方便地设计出不同斜齿轮参数的静态加载实验台。文中经一对斜齿轮副为例详细测量了齿轮副在啮合过程中齿根应力沿齿向分布及齿宽向分布及齿宽各截面的应力波形,并与计算结果进行了对比分析。  相似文献   

13.
齿根过渡曲线对齿轮弯曲疲劳强度影响的研究   总被引:2,自引:0,他引:2  
以材料弯曲疲劳特性为基础,利用ANSYS软件采用有限元技术对不同齿根过渡曲线对齿轮齿根弯曲疲劳强度的影响进行研究,确定不同齿根过渡曲线形状及半径下的齿轮应力、应变,进而确定轮齿危险断面位置,对选择不同齿轮加工方法提供了理论依据.并对更加精确进行弯曲疲劳强度校核,对齿轮传动过程中力学特性进一步深入研究,为齿轮传动的优化设计提供了基础理论.  相似文献   

14.
基于齿根应变测试技术和优化理论提出了齿轮时变啮合刚度反求计算方法,并将其应用于齿轮故障机理研究。构建了齿根动态应力与时变啮合刚度反问题模型,并搭建齿轮裂纹故障应变测试实验台来采集齿根应变;建立了相对应的有限元模型并将计算应变与测量应变代入反问题模型,从而实现齿轮啮合刚度的反向求解。计算结果表明,相比解析法和有限元法,所提方法显著提高了求解精度并且具备更高的可靠性。建立了齿根裂纹故障的齿轮系统动力学模型,通过对动力学响应进行时域及频域分析来揭示齿轮裂纹故障机理。  相似文献   

15.
研究了平行轴线齿轮的啮合特性,包括滑动率、啮合模型和啮合频率;并与渐开线齿轮固有的节点冲击、动态传动误差和啮合冲击等特性进行比较。理论分析结果表明,平行轴线齿轮可以从根本上消除节点冲击、时变刚度对齿轮传动振动和噪声的影响;同时,平行轴线齿轮受到的啮合冲击频率较低。仿真实验结果表明,平行轴线齿轮滑动率为0,且具有稳态啮合的特性。为平行轴线齿轮的振动和噪声研究提供了理论基础,为其在齿轮变速器减振降噪领域的应用提供了依据。  相似文献   

16.
齿根过渡曲线的曲率半径大小,直接影响渐开线起始圆直径和齿根强度。从理论上分析了非圆齿轮过渡曲线及根切界限。渐开线直齿圆柱齿轮的齿根过渡曲线有多种形式,过渡曲线对于轮齿弯曲强度有重要意义。为了提高非圆齿轮仿真结果的准确程度,构建了非圆齿轮齿根过渡曲线方程,分析了齿根过渡曲线上的弯曲应力,并与不同齿根过渡曲线的弯曲应力进行对比,也为后续的仿真、有限元分析提供了一定的依据。为保证正常啮合,合理设计齿根圆角大小,合理选用刀具,探讨了刀具齿顶圆角与轮齿齿根圆角之间的对应关系,有其重要的现实价值。  相似文献   

17.
为探究行星齿轮传动过程中啮合轮齿的应力分布规律,运用AbAQUS建立了行星齿轮啮合副的有限元模型,采用非线性静态通用设置对齿轮的接触过程进行了准静态接触仿真分析,并采用显式动态分析模拟齿轮转动,将两种分析结果中接触应力与齿根应力的变化情况与传统理论计算结果进行对比,得到了模拟齿轮的动态接触应力与齿根应力的分布,本文对行星轮传动的设计以及齿轮副动态啮合特性的研究提供更为准确的分析方法。  相似文献   

18.
ANSYS在齿轮设计和计算中的应用   总被引:7,自引:0,他引:7  
本文利用ANSYS对齿轮变形和齿根应力进行了有限元计算,并利用ANSYS的面面接触单元进行齿轮接触仿真分析,计算了齿轮啮合中的接触应力和变形分布,说明了ANSYS在齿轮计算尤其在接触分析上的有效性,为齿轮CAE提供了又一途径。  相似文献   

19.
非圆齿轮传动具有广泛的应用场景。针对非圆齿轮传动,采用齿轮啮合原理和材料力学等原理及方法,提出了大重合度非圆齿轮设计方法。探讨了非圆齿轮传动原理和节曲线构建方法,计算了其节曲线曲率半径和重合度方程。建立了不同重合度非圆齿轮轮齿时变啮合刚度与载荷分配率计算模型,推导了不同重合度非圆齿轮齿根弯曲应力方程。探讨了不同结构参数下非圆齿轮副重合度、时变啮合刚度、时变载荷分配率及齿根弯曲应力变化规律,确定了轮齿所受最大载荷位置。开展了不同重合度非圆齿轮齿根弯曲应力仿真分析和实验测量,与理论计算结果进行了对比分析,最大误差分别约为4.8%和5.9%,验证了理论方法的合理性与正确性,为大重合度非圆齿轮传动的工程应用奠定了基础。  相似文献   

20.
在势能法的基础上,提出了一种斜齿轮啮合刚度修正算法。该方法考虑了齿轮真实加工时产生的齿根过渡曲线,齿根过渡曲线是刀具展成运动时齿顶尖角所形成的轨迹线,且齿根过渡曲线与渐开线的交点为渐开线的起始点。在刚度计算时,齿根到渐开线起始点用齿根过渡曲线方程来计算,渐开线起始点到齿顶用渐开线方程来计算,运用该方法计算的啮合刚度与实际更加接近。通过与有限元法的对比,验证了该修正算法的准确性,提升了斜齿轮啮合刚度的计算精度。基于该方法,分析了渐开线形状、啮合位置以及重合度对斜齿轮啮合刚度以及传递误差的影响。结果表明,当压力角增大时,渐开线曲率半径会变大,从而提高了齿轮的端面刚度;同时,端面重合度会先增大后减小,在端面刚度与端面重合度的综合影响下,平均啮合刚度与端面重合度变化趋势相同;当啮合位置更靠近节点时,啮合刚度会提高;增加重合度会使平均刚度增加,并使传递误差峰峰值趋势整体下降;但当重合度接近0.5的奇数倍时,传递误差峰峰值会出现极大值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号