首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of N2-gas pressure on the liquid filling of large pores (20 to 120 μm in diameter) is studied in sintered β'-sialon ( z = 1). The initially sintered sialon with large pores is sintered again and infitrated by a liquid (41A12O3-41Y2O3-14Si3Y4-4AIN (wt%)) at 17800°C for various times under 0.1-, 0.3-, and 0.5-MPa (1-, 3-, and 5-atm) N2. The liquid fills large interconnected pores; the size of the pores filled with liquid increases with N2-gas pressure and time. In some liquid pockets, gas bubbles are formed and subsequently disappear during prolonged sintering treatment. The liquid-filling be havior with sintering pressure and time is explained by gas pressure in the pore and thermal decomposition of the material. The benefit of gas-pressure sintering for the elimination of large pores is assessed.  相似文献   

2.
The microstructures of gas-pressure-sintered materials from β-Si3N4 powder were characterized in terms of the diameter and aspect ratio of the grains. The size distributions of diameters in materials fabricated by heating for 1 h at 1850° to 2000°C were nearly constant when they were normalized by average diameters because of normal grain growth. The rate-determining step in the densification and grain growth was expected to be the diffusion of materials through the liquid phase. The activation energy for grain growth was 372 kJ/mol. The average aspect ratio of the grains was 3 to 4, whereas that of large grains was smaller because of shape accommodation. The fracture toughness was about the same as that of material from α-Si3N4 powder despite the smaller aspect ratio of the grains  相似文献   

3.
The mechanism for grain growth of β-SiAlON has been investigated by annealing high-density β-SiAlON–YAG materials at 1650°C. An observed decrease in grain growth with increasing weight fraction of liquid confirms a diffusion-controlled growth mechanism in the system. The grain-growth mechanism is further characterized by the development of large elongated grains in addition to smaller grains. After prolonged heating, an equilibrium maximum grain size is developed causing a homogenization of the microstructure.  相似文献   

4.
α(6 H )- and β(3 C )-SiC powders were sintered with the addition of AlB2 and carbon. α-SiC powder could be densified to ∼98% of the theoretical density over a wide range of temperatures from 1900° to 2150°C and with the additives of 0.67–2.7 mass% of AlB2 and 2.0 mass% of carbon. Sintering of the β-SiC powder required a temperature of >2000°C for densification with these additives. Grains in the α-SiC specimens grew gradually from spherical-shaped to plate-shaped grains at 2000°C; the 6 H polytype transformed mainly to 4 H . On the other hand, grains in the β-SiC largely grew at >2000°C; the 3 C polytype transformed to 4 H , 6 H , and 15 R . The stacking faults introduced in grains were denser in β-SiC than in α-SiC. The rapid grain growth in the β-SiC specimen was attributed to polytype transformation from the unstable 3 C polytype at the sintering temperature.  相似文献   

5.
The present work is concerned with the sintering of an α-β sialon ceramic using five different silicon nitride powders from a single source. The parameters varied in the silicon nitride were the amount of "free' silicon, iron content, α:β ratio, and grain size as measured by BET surface. The sintering atmosphere was varied by use of protective powder beds with passive (boron nitride) and active (SiO-generating) properties. Five sintering temperatures between 1600° and 1800°C were used. Microstructural characterization as well as density, hardness, and fracture toughness measurements were carried out. The sintering conditions were found to be critical for obtaining fully dense materials and low weight change. The optimum sintering temperature was 1750°C. The silicon nitride powder with a high content of free silicon resulted in a material which was more susceptible to the sintering atmosphere conditions. An α-β sialon made from a silicon nitride powder with a high β-α phase ratio resulted in a higher β-α ratio in the sintered material.  相似文献   

6.
Thin foils of polycrystalline α-alumina were reacted with a potassium-rich vapor at ≤900°C. Potassium β-alumina formed along α-alumina grain boundaries and protruded from holes in the foils. Conventional transmission electron microscopy was used to analyze the α-alumina/β-alumina phase boundary for possible orientation relations.  相似文献   

7.
The effects of forming pressure and sintering temperature on shrinkuge, density, and phase composition of α- and β-SiC were determined. Alpha SiC developed the 4H phase at the expense of the 6H phase at >2150°C. The beta form converted to the 6H phuse at >2000°C, with intermediate development of the 15R and 4H phases  相似文献   

8.
Single-phase small crystals of Li-, Mg-, Ca-, Y-, Nd-, and Yb-α-SiAlONs have been obtained by liquid-phase sintering for various compositions and processing conditions. These crystals are suitable for seeding grain growth in α-SiAlON ceramics. The influence of chemical and processing parameters (starting composition and powders, green density, liquid content, heating schedule, nitrogen pressure, and temperature) on the size and morphology of seed crystals has been investigated. The results are compared with those for β-Si3N4 crystal formation, and the differences are discussed in terms of nucleation and growth kinetics during liquid-phase sintering.  相似文献   

9.
By using α-Si3N4 and β-Si3N4 starting powders with similar particle size and distribution, the effect of α-β (β') phase transition on densification and microstructure is investigated during the liquid-phase sintering of 82Si3N4·9Al2O3·9Y2O3 (wt%) and 80Si3N4·13Al2O3·5AIN·5AIN·2Y2O3. When α-Si3N4 powder is used, the grains become elongated, apparently hindering the densification process. Hence, the phase transition does not enhance the densification.  相似文献   

10.
Gas-pressure sintering of α-Si3N4 was carried out at 1850 ° to 2000°C in 980-kPa N2. The diameters and aspect ratios of hexagonal grains in the sintered materials were measured on polished and etched surfaces. The materials have a bimodal distribution of grain diameters. The average aspect ratio in the materials from α-Si3N4 powder was similar to that in the materials from β-Si3N4 powder. The aspect ratio of large and elongated grains was larger than that of the average for all grains. The development of elongated grains was related to the formation of large nuclei during the α-to-β phase transformation. The fracture toughness of gaspressure-sintered materials was not related to the α content in the starting powder or the aspect ratio of the grains, but to the diameter of the large grains. Crack bridging was the main toughening mechanism in gas-pressure-sintered Si3N4 ceramics.  相似文献   

11.
Two calcium-doped α-SiAlON compositions (Ca0.6Si10.2Al1.8−O0.6N15.4 and Ca1.8Si6.6Al5.4O1.8N14.2) were prepared by hot pressing at 1600° and 1500°C, respectively, for complete phase transformation from α-Si3N4 to α-SiAlON. Both samples were subsequently fired at different temperatures for different periods of time to study the grain growth of α-SiAlON. Elongated α-SiAlON grains were developed in both samples at high temperatures. The kinetics of grain growth was investigated based on the variations in length and width of the α-SiAlON grains under different sintering conditions. Different growth rates were found between the length and width directions of the α-SiAlON crystals, resulting in anisotropic grain growth in the microstructural development.  相似文献   

12.
13.
The synthesis of dense sintered sialon with external additives selected from the system Y2O3–AIN–SiO2 is reported. The highest density (3.21 g/cm3) was achieved at 1750°C at 90 min of sintering with 5 wt% additive. The degree of sialon substitution increased with the amount of liquid; the YSiO2N crystalline phase formed concurrently. Strength degradation occurred above 1000°C. The fracture toughness of the material sintered with a lower amount of sintering aid remained relatively unchanged to 1200°C. The material with more additive exhibited decreased toughness above 1000°C.  相似文献   

14.
Densification and Shrinkage During Liquid-Phase Sintering   总被引:2,自引:0,他引:2  
The process of densification and shrinkage during the final stage of liquid-phase sintering is described. The densification occurs by the liquid filling of pores during grain growth. The pore filling results in an instantaneous drop of liquid pressure in the compact and causes gradual accommodation of grain shape. The grain shape accommodation by the growth causes the specimen shrinkage. At the same time, the grains tend to restore their spherical shape, resulting in microstructure homogenization around filled pores. The process of densification and shrinkage appears to be determined by the growth of grains during sintering.  相似文献   

15.
16.
The distribution and orientation of platelet-shaped particles of α-alumina in a fine-grained alumina matrix is shown to template texture development via anisotropic grain growth. The textured microstructure ranges from 4 wt% oriented platelet particles in calcined samples to nearly 100% oriented α-Al2O3 grains after sintering at 1400°C. A CaO + SiO2 liquid phase creates favorable thermodynamic and kinetic conditions for anisotropic grain growth and grain reorientation during sintering. Important criteria for templated grain growth include (1) anisotropic crystal structure and growth, (2) high thermodynamic driving force for template grain growth, and (3) modification of diffusion in the system to continuously provide material to the anisotropically growing template grains.  相似文献   

17.
Various mechanical and thermal properties of β'-sialon ceramics, Si6–zAlzOzN8–z, prepared from aqueous slurries by a slip casting method were investigated as a function of Z values from 0 to 4. In the present study, Si6–zAlzOzN8–z occurred in the β'-sialon crystalline phase only near Z = 1. The maximum values for bending strength and fracture toughness, 660 MPa and 5.7 MPa·m1/2, respectively, were obtained at Z = 0.5. The thermal expansion coefficient exhibited its lowest value, 3.4 × 10−6· T−1 , at Z = 0.5. In view of the present results, β'-sialon, Si6–zAlzOzN8–z (Z = 0.5–1), prepared by a slip casting method using aqueous slurries could be adopted, with no problem, for refractory parts.  相似文献   

18.
High Na vapor pressure, peritectic decomposition, and high reactivity of the melt complicate the growth of α-alumina crystals. These difficulties were overcome by using a high-pressure (300 psig) growth chamber, Na2O-rich melts, and Ir for all surfaces in contact with the melt. These procedures were combined with the edge-defined film-fed growth technique to produce single-crystal β alumina tubes and ribbons.  相似文献   

19.
Two-phase α/β composites have been produced with a combination of high hardness, fracture toughness, and strength. Compared with a single-phase α-sialon, the composite showed around a twofold increase in both fracture toughness and bending strength, with only minimal reduction in hardness. Despite being a two-phase material, the optical properties of the composite were very good, showing transparency in sections of around 0.5 mm thickness. The optical properties were in fact better for the composite than for the single-phase α-sialon. Work to date on transparent sialons has focused on single-phase α-materials, which have inherently low fracture toughness unless elongated microstructures are developed. However, this microstructural development appears to adversely affect optical transparency. In this work it has been shown that good combination of mechanical properties can be achieved while maintaining optical transparency in two-phase composite sialons. The development of such materials should widen their range of application.  相似文献   

20.
The effect of additions of B, Al, and B + Al on the pressureless sintering of β-Sic was examined. The influence of the sintering atmosphere and heating schedule on densification behavior, polytype transformation, and microstructure development was also studied. High densities were obtained at 1940°C by the simultaneous addition of B and Al. The decrease in the sintering temperature is attributed to the presence of a liquid phase which results in the formation of platelets (up to 200 # in size) of an α-polytype, predominantly 4H and 6H. Polytype transformation and exaggerated grain growth could be prevented by annealing the compact at 1650° to 18500°C for 0.5 to 1 h. This procedure results in a better redistribution of the sintering aids, giving a fine-grained microstructure, constituted primarily of the cubic 3C polytype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号