首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Senile plaques, a neuropathological hallmark of Alzheimer's disease, consist primarily of insoluble aggregates of beta-amyloid peptide (A beta). A 42-residue peptide (A beta 1-42) appears to be the predominant form. In contrast to A beta 1-40, A beta 1-42 is characterized by its extreme tendency to aggregate into fibers or precipitate. A tailored biotechnological method prevents aggregation of A beta 1-42 monomers during its production. The method is based on a protein tail fused to the amino terminus of A beta. This tail leads to a high expression in E. coli, and a histidine affinity tag facilitates purification. Selective cleavage of the fusion tail is performed with cyanogen bromide by immobilizing the fusion protein on a reversed phase chromatography column. Cleavage then occurs only at the methionine positioned at the designed site but not at the methionine contained in the membrane anchor sequence of A beta. Furthermore, immobilization prevents aggregation of cleaved A beta. Elution from the HPLC column and all succeeding purification steps are optimized to preserve A beta 1-42 as a monomer. Solutions of monomeric A beta 1-42 spontaneously aggregate into fibers within hours. This permits the investigation of the transition of monomers into fibers and the correlation of physico-chemical properties with biological activities. Mutations of A beta 1-42 at position 35 influence the aggregation properties. Wild-type A beta 1-42 with methionine at position 35 has similar properties as A beta with a methionine sulfoxide residue. The fiber formation tendency, however, is reduced when position 35 is occupied by a glutamine, serine, leucine, or a glutamic acid residue.  相似文献   

2.
3.
The three-dimensional structure of the Alzheimer's disease Abeta1-42 peptide was predicted by sequence homology, threading approaches and by experimental observations. The Abeta molecule displayed a Greek key motif with four antiparallel beta-strands. To shield thermodynamically unfavorable domains, two Abeta molecules interact with each other to generate a beta-barrel structure with a hydrophilic surface and a hydrophobic core. The N-terminal domains of the dimer form crevices into which the non-polar C-termini are accommodated to yield a globular structure 27x32 A in diameter. Alternatively, the C-terminal domains of two opposing dimers could be extended to form an antiparallel beta-sheet. The stacking of these building blocks generates a helical protofilament. To create a thermodynamically more favorable structure, three protofilaments associate into a right-handed triple helix with a hydrophobic beta-sheet completely surrounded by the hydrophilic beta-barrels made of residues 1-28. Two triple helical strands can further associate into a right-handed amyloid filament. Although our model did not meet all the expected criteria, it nevertheless exhibited a series of naturally disposed structural features, revealed by other biophysical studies utilizing synthetic Abeta peptides. These characteristics are of functional significance in terms of Abeta-topology, fibril formation and cytotoxicity. The model also suggests that Abeta may not exist in a thermodynamically stable conformation, but rather as an ensemble of metastable dimeric structures some of which are capable of generating an extended C-terminal antiparallel beta-sheet essential in the promotion of fibrillogenesis.  相似文献   

4.
Recent studies have demonstrated the deposition of amyloid beta (A beta) protein with carboxyl- and aminoterminal heterogeneity in cortical and cerebrovascular deposits of Alzheimer's disease (AD). Using carboxyl end-terminal specific antibodies to A beta peptides, we examined the immunocytochemical distribution of A beta 40 and A beta 42 species in brain tissue from a Swedish subject with familial AD (FAD) bearing the double mutation at codons 670/671 in the amyloid beta precursor protein (A beta PP), and from subjects with Down's syndrome and sporadic AD. In the Swedish subject, we found profound parenchymal A beta deposits and cerebral amyloid angiopathy in all four cortical lobes and cerebellum. A beta 42 was evident in almost all parenchymal deposits as well as many vascular deposits. Although A beta 40 was present in meningeal and intraparenchymal vessels, deposits containing this shorter peptide reactivity were sparse. Surprisingly, our observations in Swedish FAD showing a remarkable abundance of A beta 42 in both parenchymal and vascular deposits were qualitatively similar to the Down's syndrome and most sporadic AD cases, and to previously published A beta PP717 FAD. While previous transfection studies in different cell cultures indicate substantially increased soluble A beta production and A beta 40 species to be predominant, it would appear that the double A beta PP mutations in Swedish FAD largely result in the deposition of the longer A beta 42 in vivo.  相似文献   

5.
The pheochromocytoma PC12 cell line was used as a model system to characterize the role of the p75 neurotrophin receptor (p75NTR) and tyrosine kinase (Trk) A nerve growth factor (NGF) receptors on amyloid precursor protein (APP) expression and processing. NGF increased in a dose-dependent fashion neurite outgrowth, APP mRNA expression, and APP secretion with maximal effects at concentrations known to saturate TrkA receptor binding. Displacement of NGF binding to p75NTR by addition of an excess of brain-derived neurotrophic factor abolished NGF's effects on neurite outgrowth and APP metabolism, whereas addition of brain-derived neurotrophic factor alone did not induce neurite outgrowth or affect APP mRNA or protein processing. However, treatment of PC12 cells with C2-ceramide, an analogue of ceramide, the endogenous product produced by the activity of p75NTR-activated sphingomyelinase, mimicked the effects of NGF on cell morphology and stimulation of both APP mRNA levels and APP secretion. Specific stimulation of TrkA receptors by receptor cross-linking, on the other hand, selectively stimulated neurite outgrowth and APP secretion but not APP mRNA levels, which were decreased. These findings demonstrate that in PC12 cells expressing p75NTR and TrkA receptors, binding of NGF to the p75NTR is required to mediate NGF effects on cell morphology and APP metabolism. Furthermore, our data are consistent with NGF having specific effects on p75NTR not shared with other neurotrophins. Lastly, we have shown that specific activation of TrkA receptors--in contrast to p75NTR-associated signaling--stimulates neurite outgrowth and increases nonamyloidogenic secretory APP processing without increases in APP mRNA levels.  相似文献   

6.
The amyloid fibrils of Alzheimer's disease and Down's syndrome amyloid deposits are composed mainly of aggregated amyloid beta protein (A beta) which also exists in a soluble form. It has been shown that both Alzheimer's disease and Down's syndrome share another common feature: the decrease in plasma cholesterol esterification in affected individuals. In the present work the effect of synthetic peptides A beta 1-40 and A beta 1-28 on normal human plasma cholesterol esterification rate was studied. Both peptides at a concentration of 1 ng/ml inhibited plasma cholesterol esterification rate to 40-50 % of control value. Statistical analysis showed no differences in the effect of A beta 1-40 and A beta 1-28 on the inhibition, suggesting the importance of A beta sequence 1-28 for this effect.  相似文献   

7.
The serpin alpha1-antichymotrypsin is a major component of brain amyloid plaques in Alzheimer's disease. In vitro alpha1-antichymotrypsin interacts with the Alzheimer's amyloid peptide Abeta1-42 and stimulates both formation and disruption of neurotoxic Abeta1-42 fibrils in a concentration-dependent manner. We have constructed a new hybrid model of the complex between Abeta1-42 and alpha1-antichymotrypsin in which both amino and carboxyl sequences of Abeta1-42 insert into two different beta-sheets of alpha1-antichymotrypsin. We have tested this model and shown experimentally that full-length and amino-terminal segments of Abeta1-42 bind to alpha1-antichymotrypsin as predicted. We also show that Abeta1-42 forms both intra- and intermolecular SDS-stable complexes with alpha1-antichymotrypsin and that the binding of Abeta1-42 to alpha1-antichymotrypsin abolishes the inhibitory activity of the latter and its ability to form stable complex with chymotrypsin. The existence of both inter- as well as intramolecular complexes of Abeta1-42 explains the nonlinear concentration-dependent effects of alpha1-antichymotrypsin on Abeta1-42 fibril formation, which we have reinvestigated here over a broad range of Abeta1-42:alpha1-antichymotrypsin ratios. These data suggest a molecular basis for the distinction between amorphous and fibrillar Abeta1-42 in vivo. The reciprocal effects of Abeta1-42 and alpha1-antichymotrypsin could play a role in the etiology of Alzheimer's disease.  相似文献   

8.
The effect of the cholinesterase inhibitors tacrine and donepezil on A beta(25-35)-induced toxicity was investigated in rat pheochromocytoma PC12 cells by measuring the mitochondrial activity. Tacrine and donepezil was found in clinical relevant concentrations (10(-7)-10(-6) M) to attenuate A beta(25-35)-induced toxicity in PC12 cells. The neuroprotective effect of tacrine was blocked in the presence of the nicotinic antagonists mecamylamine (10(-5) M) and tubocurarine (10(-5) M), suggesting an interaction via nicotinic receptors. This study demonstrates that tacrine and donepezil can exert neuroprotective properties which might be of importance and contribute to the clinical efficacy of cholinesterase inhibitors in the treatment of Alzheimer's disease.  相似文献   

9.
The amyloid beta-peptide is the major protein constituent of neuritic plaques in Alzheimer's disease. The beta-peptide varies slightly in length and exists in two predominant forms: (1) the shorter, 40 residue beta-(1-40), found mainly in cerebrovascular amyloid; and (2) the longer, 42 residue beta-(1-42), which is the major component in amyloid plaque core deposits. We report here that the sodium dodecyl sulphate (SDS) micelle, a membrane-mimicking system for biophysical studies, prevents aggregation of the beta-(1-40) and the beta-(1-42) into the neurotoxic amyloid-like, beta-pleated sheet structure, and instead encourages folding into predominantly alpha-helical structures at pH 7.2. Analysis of the nuclear Overhauser enhancement (NOE) and the alphaH NMR chemical shift data revealed no significant structural differences between the beta-(1-40) and the beta-(1-42). The NMR-derived, three-dimensional structure of the beta-(1-42) consists of an extended chain (Asp1-Gly9), two alpha-helices (Tyr10-Val24 and Lys28-Ala42), and a looped region (Gly25-Ser26-Asn27). The most stable alpha-helical regions reside at Gln15-Val24 and Lys28-Val36. The majority of the amide (NH) temperature coefficients were less than 5, indicative of predominately strong NH backbone bonding. The lack of a persistent region with consistently low NH coefficients, together with the rapid NH exchange rates in deuterated water and spin-labeled studies, suggests that the beta-peptide is located at the lipid-water interface of the micelle and does not become inbedded within the hydrophobic interior. This result has implications for the circulation of membrane-bound beta-peptide in biological fluids, and may also facilitate the design of amyloid inhibitors to prevent an alpha-helix-->beta-sheet conversion in Alzheimer's disease.  相似文献   

10.
We report a case of pseudosarcomatous fibromyxoid tumor of the bladder in a 23-year-old man with a 2 month history of painless gross hematuria, which was studied by biphasic contrast-enhanced helical CT. CT demonstrated a 2 cm diameter polypoid enhancing mass in the anterior bladder wall. The lesion measured 103 and 91 HU on early and delayed images, respectively. Increased contrast enhancement was attributed to a histologically highly vascular myxoid stroma.  相似文献   

11.
Three adrenergic receptor families that selectively activate three different G proteins (alpha1/Gq/11, alpha2/Gi, and beta/Gs) were used to study mitogen-activated protein kinase (MAPK) activation and differentiation in PC12 cells. PC12 cells were stably transfected with alpha1A-, alpha2A-, or beta1-adrenergic receptors (ARs) in an inducible expression vector, and subclones were characterized. Norepinephrine stimulated inositol phosphate formation in alpha1A-transfected cells, inhibited cyclic adenosine 3'5'-monophosphate (cAMP) formation in alpha2A-transfected cells, and stimulated cAMP formation in beta1-transfected cells. Nerve growth factor activated extracellular signal-regulated kinases (ERKs) in all cell lines; however, norepinephrine activated ERKs only in alpha1A- and beta1-transfected cells but not in alpha2A-transfected cells. Norepinephrine also activated c-Jun NH2-terminal kinase and p38 MAPK in alpha1A-transfected cells but not in beta1- or alpha2A-transfected cells. Norepinephrine caused differentiation of PC12 cells expressing alpha1A-ARs but not those expressing beta1- or alpha2A-ARs. However, norepinephrine acted synergistically with nerve growth factor in promoting differentiation of cells expressing beta1-ARs. Whereas ERKs are activated by Gi- but not Gs-linked receptors in many fibroblastic cell lines, we observed the opposite in PC12 cells. The results show that activation of the different G protein signaling pathways has different effects on MAPKs and differentiation in PC12 cells, with Gq signaling pathways activating all three major MAPK pathways.  相似文献   

12.
As a first step in determining what cellular processes are regulated by the calcium-modulated protein S100A1 isoform in neurons, the effects of ablated S100A1 expression on neurite organization and microtubule/tubulin levels in PC12 cells were examined. A mammalian expression vector containing the rat S100A1 cDNA in the antisense orientation with respect to a cytomegalovirus promoter was constructed and transfected into PC12 cells. Indirect immunofluorescence microscopy confirmed decreased S100A1 protein levels in all three stable transfectants (pAntisense clones) that expressed exogenous S100A1 antisense mRNA. In response to nerve growth factor, pAntisense clones extended significantly more neurites than control cells (4.01 +/- 0.16 versus 2.93 +/- 0.16 neurites/cell). This increase in neurite number was accompanied by an increase in total alpha-tubulin levels in untreated (4.0 +/- 0.6 versus 1.76 +/- 0.4 ng of alpha-tubulin/mg of total protein) and nerve growth factor-treated pAntisense clones (4.15 +/- 0.4 versus 2. 04 +/- 0.5 ng of alpha-tubulin/mg of total protein) when compared with control cells. At high cell densities, pAntisense clones exhibited a significant decrease in anchorage-dependent growth. In soft agar, pAntisense clones formed significantly more colonies (153 +/- 8%) than control cells (116 +/- 5%). However, the pAntisense soft agar colonies were significantly smaller than those observed in control cells (40.6 +/- 3.0 versus 59.5 +/- 1.2 micron). These data suggest that cell density inhibits both anchorage-independent and -dependent growth of pAntisense clones. In summary, ablation of S100A1 expression in PC12 cells results in increased tubulin levels, altered neurite organization, and decreased cell growth. Thus, S100A1 may directly link the cytoskeleton and calcium signal transduction pathways to cell proliferation.  相似文献   

13.
In this study we sought to learn about when and how amyloid beta-protein (A beta) accumulates in the cortex of normal individuals and about the difference in the A beta accumulation between normal aged and Alzheimer's disease (AD) brains. From consecutive autopsy cases and AD cases, hippocampus CA1 and occipitotemporal cortex T4 were sampled for A beta quantitation by the well characterized two-site enzyme immunoassays (EIAs). There was a strong tendency toward A beta 42 accumulation between the ages of 50 and 70 years in T4 and a little later in CA1. The A beta 42 levels were consistently higher in T4 than those in CA1 in any given case. The levels of A beta 42 in AD brains were significantly higher than those in control brains, and the extent of A beta 42 amino-terminal modification was also much greater in AD brains than that in control brains. Even in cases in which no senile plaques were immunocytochemically detected, EIAs clearly showed that significant amounts of A beta 42 already had accumulated. In contrast to A beta 42, A beta 40 showed no apparent age-dependent accumulation, and its high levels were found to be associated with AD.  相似文献   

14.
beta-All-trans-retinoic acid (RA)-induced endodermal differentiation of mouse F9 teratocarcinoma cells is accompanied by changes in glycoprotein glycosylation, including expression of i antigen (i.e. polylactosamine) and leukophytohemagglutinin-reactive oligosaccharides (i.e. -GlcNAc beta 1-6Man alpha 1-6-branched N-linked). We have used the F9 teratocarcinoma cells as a model to study developmental regulation of glycosyltransferase activities which are responsible for the biosynthesis of beta 1-6GlcNAc-branched N- and O-linked oligosaccharides and polylactosamine. Growth of F9 cells in the presence of 10(-6) M RA for 4 days increased core 2 GlcNAc transferase and GlcNAc transferase V activities by 13- and 6-fold, respectively, whereas the activities of GlcNAc transferase I, beta 1-3GlcNAc transferase (i), beta 1-4Gal transferase, and beta 1-3Gal transferase increased 2-4-fold. Induction of glycosyltransferase activities by RA was dose-dependent and showed a biphasic response with approximately half of the increase observed 3 days after RA treatment and the remainder occurred by day 4. PYS-2, a parietal endoderm cell line, showed levels of glycosyltransferase activities similar to those of RA-treated F9 cells. Glycosyltransferase activities in the RA-resistant F9 cell line (RA-3-10) were low and showed only a small induction by RA. These observations suggest that differentiation of F9 cells is closely associated with induction of multiple glycosyltransferase activities, with most pronounced increases in GlcNAc transferase V and 2',5'-tetradenylate (core 2) GlcNAc transferase. The increase in GlcNAc transferase V was also reflected by the 4-6-fold increase in the binding of 125I-leukophytohemagglutinin to several cellular glycoproteins, which occurred after 3 days of RA treatment. The endo-beta-galactosidase-sensitive polylactosamine content of membrane glycoproteins and, in particular, the LAMP-1 glycoprotein was markedly increased after RA treatment of F9 cells. Consistent with these observations, fucosylated polylactosamine (i.e. dimeric Lex) was also increased in RA-treated cells. Analysis of the aryl oligosaccharides produced by F9 cells cultured in the presence of aryl alpha-D-GalNAc showed that RA treatment enhanced the synthesis of disialyl core 2 O-linked oligosaccharides and increased the polylactosamine content of the aryl oligosaccharides by > 20-fold. The results suggest that differentiation of F9 cells into endoderm is closely associated with increased GlcNAc transferase V and core 2 GlcNAc transferase activities, enzymes which control the level of beta 1-6GlcNAc-branched N- and O-linked oligosaccharides, the preferred substrates for polylactosamine addition.  相似文献   

15.
The mismetabolism of amyloid precursor protein (APP), favouring the production of A beta, is considered to be central to the pathogenesis of Alzheimer's disease (AD). However it remains to be established whether the causative factor is the reported toxicity of A beta or reduced production of secretory derivatives of APP which may have trophic or neuroprotective properties. One possible contributory factor to an imbalance in APP metabolism is the impaired cellular energy availability described in AD. The aim of this study was to investigate processing of APP-like proteins following inhibition of oxidative energy metabolism in PC12 cells. Under these conditions, intracellular and secreted APP-like proteins were significantly reduced. Treatment of energy perturbed cells with the lysosomotropic agent chloroquine restored intracellular concentrations of APP-like proteins to the control range, while the secretion was completely restored by activation of protein kinase C. These findings raise the possibility that energy related metabolic stress may lead to altered metabolism of APP-like proteins favouring a potentially amyloidogenic pathway. Furthermore, the observation that activation of PKC is able to overcome this potentially pathogenic process has important implications for treatment of AD with the current generation of cholinomimetic drugs, suggesting that such drugs may slow disease progression as well as improve cognitive dysfunction.  相似文献   

16.
Mutations in the presenilin genes PS1 and PS2 cause the most common form of early-onset familial Alzheimer's disease. The influence of PS1 mutations on the generation of endogenous intracellular amyloid beta-protein (A beta) species was assessed using a highly sensitive immunoblotting technique with inducible mouse neuroblastoma (Neuro 2a) cell lines expressing the human wild-type (wt) or mutated PS1 (M146L or delta exon 10). The induction of mutated PS1 increased the intracellular levels of two distinct A beta species ending at residue 42 that were likely to be A beta1-42 and its N-terminally truncated variant(s) A beta x-42. The induction of mutated PS1 resulted in a higher level of intracellular A beta1-42 than of intracellular A beta x-42, whereas extracellular levels of A beta1-42 and A beta x-42 were increased proportionally. In addition, the intracellular generation of these A beta42 species in wt and mutated PS1-induced cells was completely blocked by brefeldin A, whereas it exhibited differential sensitivities to monensin: the increased accumulation of intracellular A beta x-42 versus inhibition of intracellular A beta1-42 generation. These data strongly suggest that A beta x-42 is generated in a proximal Golgi, whereas A beta1-42 is generated in a distal Golgi and/or a post-Golgi compartment. Thus, it appears that PS1 mutations enhance the degree of 42-specific gamma-secretase cleavage that occurs in the normal beta-amyloid precursor protein processing pathway (a) in the endoplasmic reticulum or the early Golgi apparatus prior to beta-secretase cleavage or (b) in the distinct sites where A beta x-42 and A beta1-42 are generated.  相似文献   

17.
The activation of phosphatidylinositol (PtdIns) 3-kinase is considered to be a key event occurring after stimulation of cells with growth factors. The proto-oncogenic protein kinase B (PKB; also known as RAC protein kinase or Akt) has recently been shown to be a downstream target of PtdIns 3-kinase and may be involved in cell survival. We therefore asked whether stimulation of neuronal cells with nerve growth factor (NGF), on which certain types of neurons are dependent for survival, causes activation of PKB. Stimulation of serum-starved PC12 rat pheochromocytoma cells with NGF caused an increase of up to 14-fold in PKB activity. This activation was detected within 1 min of stimulation and occurred at NGF concentrations that are consistent with TrkA-mediated signaling. PKB activation was accompanied by a decrease in electrophoretic mobility of the kinase, which is characteristic of phosphorylation. Both PKB activation and mobility changes were prevented by wortmannin, indicating the upstream involvement of PtdIns 3-kinase in these events. Analyses employing isoform-specific antibodies for immunoprecipitation suggested that all three isoforms of PKB (alpha, beta and gamma) are activated in response to NGF. G-protein-coupled-receptor agonists, lysophosphatidic acid (lyso-PtdH) and thrombin, which induce rapid neurite retraction, neither stimulated PKB activity, nor affected NGF-induced or insulin-induced kinase activation. Wortmannin treatment did not prevent neurite retraction induced by lyso-PtdH or thrombin. These data suggest that PtdIns 3-kinase and PKB are not involved in cytoskeletal changes mediated by the small GTPase Rho.  相似文献   

18.
Perlecan is a specific heparan sulfate proteoglycan that accumulates in the fibrillar beta-amyloid (A beta) deposits of Alzheimer's disease. Perlecan purified from the Engelbreth-Holm-Swarm tumor was used to define perlecan's interactions with A beta and its effects on A beta fibril formation. Using a solid-phase binding immunoassay, freshly solubilized full-length A beta peptides bound immobilized perlecan at two sites, representing both high-affinity [K(D) = approximately 5.8 x 10(-11) M for A beta (1-40); K(D) = approximately 6.5 x 10(-12) M for A beta (1-42)] and lower-affinity [K(D) = 3.5 x 10(-8) M for A beta (1-40); K(D) = 4.3 x 10(-8) M for A beta (1-42)] interactions. An increase in the binding capacity of A beta (1-40) to perlecan correlated with an increase in A beta amyloid fibril formation during a 1-week incubation period. The high-capacity binding of A beta (1-40) to perlecan was similarly observed using perlecan heparan sulfate glycosaminoglycans and was completely abolished by heparin, but not by chondroitin-4-sulfate. Using a thioflavin T fluorometry assay, perlecan accelerated the rate of A beta (1-40) amyloid fibril formation, causing a significant increase in A beta fibril assembly over a 2-week incubation period at 1 h (2.8-fold increase), 1 day (3.6-fold increase), and 3 days (2.8-fold increase) in comparison with A beta (1-40) alone. Perlecan also initially accelerated the formation of A beta (1-42) fibrils within 1 h and maintained significantly higher levels of A beta (1-42) thioflavin T fluorescence throughout a 2-week experimental period in comparison with A beta (1-42) alone, suggesting perlecan's ability to maintain amyloid fibril stability. Perlecan's effects on A beta (1-40) fibril formation and maintenance of A beta (1-42) fibril stability occurred in a dose-dependent manner and was also mediated primarily by perlecan's glycosaminoglycan chains. Perlecan was the most effective enhancer and accelerator of A beta fibril formation when compared directly with other amyloid plaque components, including apolipoprotein E, alpha1-antichymotrypsin, P component, C1q, and C3. This study, therefore, demonstrates that perlecan not only binds to the predominant isoforms of A beta, but also accelerates A beta fibril formation and stabilizes amyloid fibrils once formed, confirming pivotal roles for perlecan in the pathogenesis of A beta amyloidosis in Alzheimer's disease.  相似文献   

19.
To investigate the functional roles of individual HLA-DR residues in T cell recognition, transfectants expressing wild-type or mutant DR(alpha,beta 1*0401) molecules with single amino acid substitutions at 14 polymorphic positions of the DR beta 1*0401 chain or 19 positions of the DR alpha chain were used as antigen-presenting cells for five T cell clones specific for the influenza hemagglutinin peptide, HA307-19. Of the six polymorphic positions in the DR beta floor that were examined, mutations at only two positions eliminated T cell recognition: positions 13 (four clones) and 28 (one clone). In contrast, individual mutations at DR beta positions 70, 71, 78, and 86 on the alpha helix eliminated recognition by each of the clones, and mutations at positions 74 and 67 eliminated recognition by four and two clones, respectively. Most of the DR alpha mutations had minimal or no effect on most of the clones, although one clone was very sensitive to changes in the DR alpha chain, with loss of recognition in response to 10 mutants. Mutants that abrogated recognition by all of the clones were assessed for peptide binding, and only the beta 86 mutation drastically decreased peptide binding. Single amino acid substitutions at polymorphic positions in the central part of the DR beta alpha helix disrupted T cell recognition much more frequently than substitutions in the floor, suggesting that DR beta residues on the alpha helix make relatively greater contributions than those in the floor to the ability of the DR(alpha,beta 1*0401) molecule to present HA307-19. The data indicate that DR beta residues 13, 70, 71, 74, and 78, which are located in pocket 4 of the peptide binding site in the crystal structure of the DR1 molecule, exert a major and disproportionate influence on the outcome of T cell recognition, compared with other polymorphic residues.  相似文献   

20.
Conversion of rat proinsulins I and II was slower in transformed INS cells than in primary (islet) beta cells, with accumulation of des-64,65 but no detectable des-31,32-split proinsulin, indicating slow cleavage at the B-chain/connecting peptide (C-peptide) junction. Western blot analysis showed lower levels of the endoprotease PC1/3 in INS cells than in beta cells, as well as a 4-fold reduction in the ratio of PC1/3 to PC2, thus supporting the hypothesis that PC1/3 is the endoprotease responsible for cleavage at the B-chain/C-peptide junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号