共查询到19条相似文献,搜索用时 78 毫秒
1.
针对军事伪装目标在运动过程中存在与背景分布十分相似或遮挡等强干扰情况下的跟踪问题,提出了一种基于自适应多特征融合的均值漂移算法优化的粒子滤波跟踪算法。利用背景加权后的联合直方图表述目标灰度和梯度方向信息,根据前一帧目标特征的可信度自动调节双方的权重,在粒子滤波算法的框架下,利用改进后的均值漂移算法使粒子向目标状态的最大后验核密度估计方向移动,并设计了特征融合的观测模型,以提高跟踪算法的场景适应能力。实验结果表明,该算法可实现对与背景相似的军事伪装目标的稳定跟踪,对目标的严重遮挡具有很好的鲁棒性。 相似文献
2.
基于自适应多特征融合的mean shift目标跟踪 总被引:3,自引:0,他引:3
经典mean shift目标跟踪算法简单快速,具有较好的跟踪效果,但是它用单个特征描述目标,易受相似目标与背景的干扰,鲁棒性较差.针对此不足,推导出多特征融合mean shift目标定位公式;为了适应跟踪过程中目标与背景的变化,提出利用概率分布可分性判据动态评价特征对目标与背景的区分能力,并自适应地计算特征融合权重.在上述两个方面的基础上,对mean shift目标跟踪算法进行了改进,提出一种多特征融合mean shift目标跟踪算法.实验结果表明:提出的算法比经典mean shift目标跟踪算法具有更强的抗干扰性能和较高的跟踪精度. 相似文献
3.
4.
针对以颜色特征建立概率模型的Mean Shift目标跟踪算法在光线变化时存在的缺陷,提出了一种融合 改进型纹理特征与HSV颜色特征的Mean Shift目标跟踪算法。首先,设计一种具有抗光性能的自适应阈值Kirsch-LBP纹理特征算子,该算子利用Kirsch算子的8个方向模板所求的差值,并采用LBP模板均值作为自适应阈值,再按照旋转不变LBP原理提取局部纹理特征;其次,利用不同特征相似性系数间的关系作为加权准则来构建新的权重;最后,将其嵌入到Mean Shift算法中以实现目标跟踪。对比实验结果表明,本算法在光线变化场景中也具有良好的目标跟踪特性,广泛适用于光照变化和姿态变化等复杂场景下的目标跟踪领域。 相似文献
5.
Staple算法采用固定权重与学习率的方式,导致其在物体模糊等场景下跟踪精度低.为此,提出一种自适应跟踪与多特征融合的目标跟踪算法(adp-Staple).特征融合与跟踪过程中引入两种不同置信因子提升跟踪精度,特征提取过程引入主成分分析降维技术提升跟踪速度.在OTB-50与OTB-100数据集上进行对比实验,其结果表明,adp-Staple算法较传统Staple算法有更好的跟踪效果,在运动模糊等场景中有更强的鲁棒性. 相似文献
6.
为提高跟踪算法对光照或背景的大幅度变化和车辆大范围运动的鲁棒性,提出了一种基于空间直方图的多特征目标跟踪算法。算法以自适应权值多特征乘性融合框架为基础,分别建立目标的颜色、边缘和纹理空间直方图,使用Mean Shift迭代,利用各特征空间概率分布图中目标与背景的BH系数,调整特征权值。该算法使跟踪不再过分依赖某一单一特征,实现了复杂背景下目标的准确跟踪。 相似文献
7.
针对基于单一特征的目标跟踪算法,在复杂情形下,很难准确跟踪目标的问题,提出一种基于自适应背景的多特征融合目标跟踪算法。该算法利用颜色和基于灰度共生矩阵纹理特征表征目标,在粒子滤波的框中,通过分析在不同特征下,粒子空间分布、权值分布,以及特征对背景的区分性,提出一种有效的融合系数计算方法; 根据在跟踪过程中目标外观的变化情况,自适应更新目标模板。在不同场景下的实验结果表明:该算法在不降低实时性的前提下,抗背景干扰能力大幅度提高; 在各种场景下,均具有良好的稳定性和鲁棒性。 相似文献
8.
利用单一特征在复杂环境下进行目标跟踪容易导致跟踪失败。针对该问题,提出基于多特征融合与均值偏移的粒子滤波跟踪算法。在粒子滤波的总体框架下,通过嵌入均值漂移聚类算法产生更逼近真实后验分布的粒子,同时采用颜色和结构特征作为观测模型来表示目标,利用融合后的信息计算粒子的权值,并在跟踪过程中不断更新,以减小跟踪偏差。实验结果表明,与基于颜色与结构的跟踪算法相比,该算法在使用相同粒子数目时鲁棒性更高,而且粒子的平均权重得到了提高,重采样次数明显减少,即使在粒子数目较少的情况下也能实现稳定跟踪。 相似文献
9.
10.
针对运动目标外观或背景变化较大时,采用基于压缩感知的跟踪算法由于特征单一易导致漂移、跟踪不稳定甚至丢失目标等问题,提出了改进的基于自适应特征融合的压缩感知跟踪算法。该算法采用两种随机测量矩阵,分别投影V、H空间得到压缩后的纹理和颜色特征,利用在线计算的特征可靠性相对程度来自适应调整特征加权系数,充分利用两类特征的互补性来增强跟踪稳定性。对不同视频的测试结果表明,提出的方法在目标外观、背景环境变化时仍能准确跟踪目标,在目标大小为70像素×100像素时平均帧率为22帧/s,达到实时性。与提取单一特征的原压缩感知算法相比,改进后的方法在目标外观和背景变化时具有更强的鲁棒性。 相似文献
11.
针对图像目标跟踪问题,为提高跟踪精度,提出了一种多特征融合的自适应相关滤波跟踪算法。算法首先选取HOG和CN两种互补特征,分别训练两个相关滤波跟踪器跟踪图像目标,然后利用提出的响应图置信度计算公式计算两个跟踪器的响应图权重并进行自适应融合做出决策。滤波器更新阶段,算法结合两个特征的响应图置信度与两帧之间的变化率动态调整滤波器学习速率。仿真实验采用跟踪基准数据库(OTB-2013)中的36组彩色视频序列进行实验,对比了流行的相关滤波跟踪算法,结果表明,该算法在平均跟踪精度上优于其他算法,具有一定的应用价值。 相似文献
12.
针对运动目标在受到严重遮挡时难以被精确跟踪的问题,提出一种融合颜色和LBP (local binary pattern)纹理特征的多模块跟踪算法.综合考虑目标与背景的特征显著性和相似性两个因素建立比值关系进行量化分析,选取了能够最大程度区分前景目标和背景的颜色空间特征,并结合LBP纹理特征建立概率分布直方图.利用卡尔曼滤波器预测均值漂移算法的初始迭代位置.引入相似度因子来定义新的遮挡判决准则,自适应采用多模块模型进行跟踪.仿真实验结果表明了该算法的有效性. 相似文献
13.
利用LUV色彩空间的特性,提出将RGB色彩空间的目标特征描述转换到LUV色彩空间,从而解决目标表面特征变化造成的目标丢失现象,提高目标跟踪算法的鲁棒性。结合卡尔曼滤波和均值漂移跟踪算法的优点,通过一种判别机制将这两个算法得到的跟踪结果进行融合,提高目标跟踪算法的准确性。通过实验证明了新方法的有效性和准确性。 相似文献
14.
针对单一特征存在的缺陷和目标快速变化时易跟丢的问题,提出了一种结合学习率调整的自适应特征融合相关滤波跟踪算法。算法采用互补的梯度特征和颜色特征进行特征融合,通过计算滤波响应的大小来决定下一帧在融合特征中各自所占的权重,凸显优势特征,使目标与背景更具区分度。提取目标后需要更新滤波器,为了避免滤波器跟不上目标变化的情况发生,引入学习率调整机制,使滤波器更新速度能够随目标外观变化进行在线调整。因此,相较同类特征融合算法,本算法准确高效,且对于快速形变目标的鲁棒性更强。实验证明,本算法在精度和成功率上都比现有相关滤波算法更优,具有一定的应用价值。 相似文献
15.
提出一种融合Gabor小波纹理特征与颜色特征的改进mean shift目标跟踪算法.首先,提取移动目标的颜色特征和纹理特征直方图;其次,基于mean shift算法定义融合相似度系数,对特征空间进行融合并得出目标中心位置;再次,通过定义特征自适应系数来融合基于颜色和纹理特征的目标位置;最后,对上述结果进行处理,得到目标最终位置.实验结果表明,该算法在跟踪目标存在变形、噪声、遮挡时能够得到比较理想的跟踪效果. 相似文献
16.
针对mean shift跟踪方法中存在的光照变化不稳定问题,提出了基于梯度特征与彩色特征相融合的mean shift跟踪方法。首先分别提取目标的梯度特征和彩色特征,利用多尺度的相似度计算方法进行特征的匹配,然后通过最大化相似度对目标进行跟踪。通过物体和人体等运动目标的跟踪,验证了改进的跟踪算法在光照变化情况下的鲁棒性优于原有的算法,显著降低了跟踪位置误差。 相似文献
17.
针对卷积操作目标跟踪算法(ECO-HC)在遮挡、背景等干扰问题导致跟踪精度下降的问题,提出了一种自适应特征融合的卷积相关滤波算法,将CN与HOG特征进行加权融合,通过计算各自的响应来确定各自特征在下一帧的权重,将特征各自的优势充分发挥出来.此外,针对目标跟踪失败问题,提出利用形变相似多样性原理,构建目标重定位模块,当出现遮挡、快速移动等复杂情况造成跟踪的可靠性降低时,综合考虑目标响应得分、空间权重得分和形变相似多样性得分来确定目标的最终位置,实现重定位.实验证明,改进后算法与ECO-HC相比,针对目标遮挡、背景干扰等复杂情况,有效地提高了跟踪精度,鲁棒性更强. 相似文献
18.
特征加权融合的在线多示例学习跟踪算法 总被引:1,自引:0,他引:1
为了能更加准确鲁棒地跟踪目标,提出了特征加权融合的在线多示例学习跟踪算法(WFMIL)。WFMIL在多示例学习框架下分别训练两种特征(Hog和Haar)分类器。在跟踪过程中,通过线性运算融合成一个强分类器,同时在学习过程中对正包中的示例引入权重。实验结果统计表明WFMIL能很好地解决目标漂移问题,并且对目标遮挡、运动突变、光照变化以及运动模糊等具有较好的鲁棒性。 相似文献
19.
针对核相关滤波目标跟踪算法(KCF)使用单特征来描述所跟踪的目标,在复杂环境下,目标尺
度发生较大变化时,无法准确跟踪目标的问题,提出基于深度估计和特征融合的尺度自适应目标跟踪算法。首
先利用深度神经网络估计视频序列中目标的深度,建立并训练深度-尺度估计模型;在跟踪过程中,融合目标
方向梯度直方图(HOG)特征和 CN (Color Name)特征训练相关滤波器,利用深度估计网络得到目标深度值,并
利用深度-尺度估计模型得到目标的尺度值,从而在目标尺度发生变化时,能够调整目标框大小,实现尺度自
适应的目标跟踪算法。实验结果表明,与经典的 KCF 算法相比,可获得更高的精度,与尺度自适应的判别型
尺度空间跟踪(DSST)算法相比,在尺度变化较大时,跟踪速度更快;在环境复杂、目标被遮挡时,鲁棒性更好。 相似文献