首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
负载型杂多酸催化剂的制备及光催化性能研究   总被引:1,自引:0,他引:1  
杨婥  冯雪风  陆春 《工业催化》2009,17(5):61-65
采用浸渍法和微波法相结合,制备负载型杂多酸光催化剂H3PMo12O40/TiO2。在紫外光照射下,研究对模拟染料废水酸性蓝溶液的光催化降解的影响。结果表明,H3PMo12O40/TiO2比单独的H3PMo12O40光催化性能好,〖JP2〗在初始浓度10 mg·L-1酸性蓝溶液、m(H3PMo12O40)∶m(TiO2)=1∶3、催化剂加入量为90 mg·L-1、pH=1.05、30%的H2O2用量10 mL·L-1和180 min条件下,脱色率达93%以上。  相似文献   

2.
载体对Ni基催化剂催化蒽醌加氢活性的影响   总被引:2,自引:1,他引:1  
研究了载体对Ni基催化剂用于蒽醌法制备H2O2加氢活性的影响,同时对比了骨架镍的催化活性,考察Ni负载量对催化剂活性的影响。结果表明,负载在SiO2上的催化剂比负载在γ-Al2O3上的催化活性高,对于Ni/SiO2催化剂,Ni负载质量分数28.57%~50%时,加氢活性较高,按单位质量纯Ni上H2O2产量计算,Ni/SiO2优于骨架镍催化剂,Ni负载量过高时,加氢活性降低。2-乙基蒽醌在Ni/SiO2催化剂上的加氢为结构敏感型反应,当Ni在SiO2的分散度达到约18%时,催化活性较佳。  相似文献   

3.
用共沉淀法制备了Cu1Zr1Ce9Oδ催化剂,考察了反应温度和反应气体中各组分对Cu1Zr1Ce9Oδ催化剂上选择性氧化CO反应的影响。结果表明,降温的过程中Cu1Zr1Ce9Oδ催化剂的活性滞后。H2的存在有利于CO的脱附,促进了低温下选择性氧化CO的反应;而温度较高时,H2氧化副反应的发生降低了CO的转化率,反应气中H2O和CO2降低了催化剂的活性和选择性,最佳反应温度为(160~200) ℃,O2的进入量取3为宜。  相似文献   

4.
用高压反应釜对一种骨架Ni催化剂和八种Pd/Al2O3催化剂在苯乙烯环境下,对连串反应苯乙炔的选择性加氢性能进行了实验评价。通过一系列实验考察了催化剂活性组分负载量、反应温度、反应压力、反应时间和搅拌速率对反应结果的影响。反应结果的评价指标为苯乙炔转化率、苯乙烯收率和二者的综合。研究结果表明,骨架Ni催化剂的活性和选择性均较差,不适宜用作苯乙烯环境下的苯乙炔加氢过程。对Pd/Al2O3型催化剂而言,较低的反应温度和微正压的反应条件对苯乙炔的选择性加氢有利;延长反应时间无助于苯乙炔转化率的提高,相反却会导致苯乙烯收率的迅速降低;提高搅拌速率可以消除相间扩散传质对反应过程的影响,因此对苯乙炔的选择性加氢是有利的。另外,在实验研究的反应条件范围内,苯乙炔的转化率似乎存在一个极限值,分析认为这可能是由于催化剂的比表面积和活性组分负载量太高引起的。  相似文献   

5.
提出了苯甲酸甲酯气相原位加氢制苯甲醛的路线。在常压固定床反应器上研究了浸渍法制备的Cu-MnO/γ-Al2O3双功能催化剂催化苯甲酸甲酯气相原位加氢制苯甲醛的反应性能,考察了催化剂的组成、反应温度、进样速率、酯/醇/水摩尔比等因素对苯甲酸甲酯转化率和苯甲醛选择性的影响。在优化的反应条件(苯甲酸甲酯/甲醇/水摩尔比为0.5/40/40、反应温度为420℃、进样速率为0.1 ml•min-1)下,苯甲醛选择性可达到88.5%,苯甲酸甲酯的转化率为79.6%,且Cu-MnO/γ-Al2O3催化剂具有较好的稳定性。根据产物分布提出了苯甲酸甲酯原位加氢的反应机理。该反应体系不需要外部供应氢气,避免了氢气的生产和运输,简化了反应工艺。  相似文献   

6.
H2对CO气相催化偶联制草酸二乙酯反应的失活机理   总被引:3,自引:0,他引:3       下载免费PDF全文
重点研究了氢气(H2)对一氧化碳(CO)催化偶联反应制草酸二乙酯的影响,分别考察了不同H2浓度、不同温度和不同空时条件下加入H2对CO偶联反应的影响,结果发现H2的加入使反应过程中CO转化率、草酸二乙酯选择性和空时收率明显下降,且在实验条件范围内,通入H2浓度越高、反应温度越高,催化剂活性下降越快.研究得出,H2气氛下CO偶联反应失活动力学方程为:-da/dt=kdc0.65H2.进一步分析失活动力学方程可知,加氢反应过程中,H2和CO吸附在同一个活性中心上,H2在活性中心上的吸附抑制了CO在催化剂上的吸附,从而使得CO催化偶联反应生成草酸二乙酯的速率下降,导致加氢后CO转化率、草酸二乙酯选择性和空时收率降低.  相似文献   

7.
采用共沉淀法制备γ-Al2O3载体和不同Ce添加量的CeO2-Al2O3载体,然后用浸渍法制备Ni负载质量分数10%的Ni/γ-Al2O3和Ni/CeO2-Al2O3催化剂。在固定床微反装置中考察了反应温度、原料气配比和CH4空速等工艺条件对Ni/γ-Al2O3和Ni/Ce30Al70Oδ催化剂在甲烷自热重整制氢反应中催化性能的影响。结果表明,添加Ce的催化剂催化性能有较大提高,在Ni/Ce30Al70Oδ催化剂上,反应温度750 ℃时, CH4转化率94.3%,与Ni/Al2O3催化剂相比,提高20%。Ni/γ-Al2O3和Ni/CeO2-Al2O3催化剂的CH4转化率均随反应温度的升高而增大。原料气中n(O2)∶n(CH4)和n(H2O)∶n(CH4)的增加均能提高各催化剂的CH4转化率。但n(O2)∶n(CH4)和n(H2O)∶n(CH4)的变化对各催化剂的催化性能的影响不同。随着n(O2)∶n(CH4)的增大,产物中n(H2)∶n(CO)降低,n(CO2)∶n(CO+CO2)升高;而n(H2O)∶n(CH4)增大时,产物中n(H2)∶n(CO)和n(CO2)∶n(CO+CO2)均升高。随着CH4空速的增加,Ni/Al2O3催化剂上CH4转化率、n(H2)∶n(CO)和n(CO2)∶n(CO+CO2)均较大程度下降;而在Ni/Ce30Al70Oδ催化剂上,随着CH4空速的增加,CH4转化率、n(H2)∶n(CO)和n(CO2)∶n(CO+CO2)变化不大。  相似文献   

8.
邱琳 《工业催化》2006,14(7):49-51
考察了制备方法、活性组分负载量和焙烧温度对Cu/Al2O3 选择性催化还原NO的影响。结果表明,采用溶胶-凝胶+浸渍法制备的Cu/Al2O3催化剂活性最好;负载Cu质量分数为15%时,催化剂的活性温域最宽,最大活性温度最低,催化活性最好;最佳焙烧温度为750 ℃。  相似文献   

9.
以Raney Ni为催化剂,在温和条件下(523~723 K)实现了苯酚催化水蒸气重整制氢反应。研究表明,反应温度、液体空速和原料浓度等反应条件是影响苯酚转化率和H2选择性的重要因素,较高的反应温度和较低的液体空速有利于提高苯酚转化率,但不利于提高H2选择性。对比苯酚水相重整制氢过程发现,尽管水蒸气重整反应温度相对较高,且需要汽化原料使反应在气相中进行,但该过程具有比水相重整更高的H2选择性(93%~100%)。此外,Raney Ni催化剂上苯酚水蒸气重整反应与现有的文献结果比较还具有反应条件温和、催化剂稳定性好(60h)以及CO含量低(CO/CO2摩尔比为0.01~0.2)等优点。将该技术应用于工业含酚有机废水的资源化处理制备的H2可以直接作为氢源使用。  相似文献   

10.
KNaHC4H4O6·4H2O/Al2O3固体碱催化制备生物柴油   总被引:1,自引:0,他引:1  
采用酒石酸钾钠(KNaHC4H4O6·4H2O)和Al2O3制备了负载型KNaHC4H4O6·4H2O/Al2O3固体碱催化剂,将其应用于菜籽油和甲醇的酯交换反应制备生物柴油,并以生物柴油的转化率作为评价其催化活性的指标。分别考察了催化剂制备条件和酯交换反应条件对催化剂活性的影响。结果表明,在催化剂用量为菜籽油质量的3.5%、醇油物质的量比为9∶1、反应温度65 ℃和反应时间3 h时,转酯化反应的转化率达96.3%。  相似文献   

11.
以过氧化氢为氧化剂,磷钨酸为催化剂,十六烷基吡啶为相转移催化剂催化氧化2-辛烯制备己酸;分别考察了反应温度、反应时间和催化剂物质的量对己酸收率的影响。在85 ℃和n(H2O2)∶n(2-辛烯)∶n(磷钨酸)∶n(十六烷基吡啶)=4.5∶1∶0.02∶0.01最佳实验条件下,己酸的收率达81.5%。  相似文献   

12.
分别考察了反应温度、过氧化氢用量及加入方式等因素对Cr、Fe和Ce改性后的杂原子MCM-41分子筛催化剂液相催化氧化环己烷制取环己酮反应的影响。研究结果表明,Cr-MCM-41〖JP〗催化剂具有较好的催化活性。选择适当的反应温度、过氧化氢用量和加入方式可以有效提高环己烷转化率和过氧化氢利用率。在70 ℃和n(C6 H12)∶n(H2O2)=1∶2条件下,采用两次加入过氧化氢的方式,环己烷转化率为33.7%,酮醇总选择性97.2%,n(环己酮)∶n(环己醇)=1.99,过氧化氢利用率37.1%。  相似文献   

13.
采用特殊的浸渍法,研制出新型Ni/Al2O3裂解汽油一段选择加氢催化剂。采用低温氮物理吸附、X光粉末衍射、氢气吸附-程序升温还原和扫描电镜等表征技术,研究了裂解汽油一段选择加氢催化剂的制备过程及条件。小型反应活性评价结果表明,该催化剂具备良好的活性、选择性和稳定性。  相似文献   

14.
磷钨酸掺杂聚苯胺催化合成环己酮1,2-丙二醇缩酮   总被引:4,自引:2,他引:2  
报道了磷钨酸掺杂聚苯胺催化剂H3PW12O40/PAn的制备,通过环己酮和1,2-丙二醇反应合成了环己酮1,2-丙二醇缩酮,探讨了磷钨酸掺杂聚苯胺催化剂对缩酮反应催化活性的影响,并系统研究了原料量比、催化剂用量和反应时间诸因素对产品收率的影响。实验表明,磷钨酸掺杂聚苯胺催化剂是合成环己酮1,2-丙二醇缩酮的良好催化剂,在n(环己酮):n(1,2-丙二醇)=1:1.5 、催化剂用量为反应物料总质量的0.50%、环己烷为带水剂、反应时间60 min的优化条件下,环己酮1,2-丙二醇缩酮的收率可达81.6%。  相似文献   

15.
铁含量对Fe-Mn-K催化剂上CO2加氢反应性能的影响   总被引:2,自引:0,他引:2  
在370 ℃、2.0 MPa和600 h-1条件下,考察了Fe-Mn-K复合催化剂上的CO2选择性加氢合成低碳烯烃性能。XRD表征表明,复合催化剂中负载的金属组分主要以Fe2O3和MnO2形式存在。通过H2-TPR和CO2-TPD研究了Fe-Mn-K催化剂对H2的还原性能和CO2吸附性能的影响,当催化剂中Fe负载质量分数为12%时,H2-TPD温度较低,CO2转化率大于30%,C=2~C=4低碳烯烃选择性也较高。CO2-TPD结果表明,随Fe含量的增加,初始脱附温度提高,脱附量增加,催化剂对CO2的吸附强度逐渐增大。  相似文献   

16.
PW/MCM-41催化剂的合成及对合成柠檬酸三丁酯反应的研究   总被引:9,自引:4,他引:5  
制备了负载H3PW12O40(PW)杂多酸的PW/MCM-41催化剂,用XRD和BET等方法表征了催化剂的结构。在负载质量分数达40%的催化剂上,XRD未检测到PW杂多酸的晶相峰。考察了不同负载质量分数的 PW/MCM-41催化剂对反应的影响。重点讨论了催化剂的活化温度、酸醇摩尔比和反应温度等因素对酯化反应的影响。最佳操作条件:PW/MCM-41负载杂多酸催化剂的磷钨酸最佳负载质量分数 40%,催化剂焙烧温度300 ℃,酸醇摩尔比1∶4,反应温度140 ℃,反应时间6~7 h。实验结果表明,负载质量分数为40%的PW/MCM-41催化剂是替代硫酸合成柠檬酸三丁酯的理想催化剂,且稳定性良好。  相似文献   

17.
研究了碱性条件下过氧化氢对杨木木粉的漂白工艺,探讨漂白温度、漂白时间、H2O2用量、pH值及偏硅酸钠用量对白度的影响。结果表明,过氧化氢对杨木木粉漂白的最佳工艺条件为:H2O2用量为40%,Na2SiO3·9H2O用量为8%,pH值为10~11,漂液温度在60~70℃,漂白时间40 min。该工艺对杨木粉进行漂白,最高白度可达到85%~90%(ISO),高于文献上报道的H2O2漂白白度。  相似文献   

18.
研究了浸渍条件和还原剂种类对蒽醌氢化制备过氧化氢Pd-BaO/δ,θ-Al2O3催化剂性能的影响。结果表明,当浸渍液温度60 ℃和pH=3.5时,催化剂上钯金属的分散度较高,钯粒子较小,催化剂活性较高。使用不同还原剂也会影响催化剂的Pd分散度和粒子大小,其中,以水合肼和H2还原得到的催化剂有较高的活性比表面积、分散度和较小的粒子尺寸,而经硼氢化钾还原的催化剂的分散度偏低。水合肼还原得到的催化剂的活性较高,H2还原的催化剂活性次之,以硼氢化钾还原的催化剂活性最差。  相似文献   

19.
磷钨酸铝合成柠檬酸三丁酯   总被引:1,自引:0,他引:1  
陈平  汤涛 《工业催化》2007,15(11):46-49
以磷钨酸和结晶三氯化铝为原料合成磷钨酸铝,并以此为催化剂, 由柠檬酸与正丁醇合成柠檬酸三丁酯。考察了醇酸物质的量比、催化剂用量、反应时间和反应温度对酯化反应的影响,得出合成柠檬酸三丁酯的最优化条件为:醇酸物质的量比为4.5∶1,催化剂用量为柠檬酸质量的2.5%,反应时间4 h, 反应温度150 ℃,产品的收率达93.5 %。将磷钨酸铝与其他类型的催化剂进行比较,证明磷钨酸铝催化高效,可回收使用。并对合成的产品进行了红外光谱分析及折光率的测定。  相似文献   

20.
采用浸渍法制备钴基催化剂,考察了催化剂焙烧温度对其F-T合成反应性能和产物分布的影响。制备催化剂时,不对催化剂进行焙烧,Co物种容易还原,并可较好分散,催化剂具有较高的催化活性和重质烃选择性。较高温度下焙烧,Co物种和载体间的相互作用增强,形成难还原的铝酸钴化合物,同时氧化钴晶粒聚集或烧结,Co物种的还原程度下降,催化剂CO加氢活性降低,重质烃选择性下降。在原料气n(H2)∶n(CO)=2.0、483 K、1.5 MPa和800 h-1条件下,未焙烧、673 K和923 K焙烧的催化剂上进行F-T合成反应,CO的转化率分别为80.27%、78.41%和61.14%,重质烃的选择性C5+分别为88.54%、88.57%和77.95%。较低焙烧温度有利于反应速率的提高和重质烃的合成,较高焙烧温度使CO加氢活性下降,有利于低碳烃的生成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号