首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
概述了国外在高超声速飞行器气动弹性和气动热弹性领域进行的研究活动,重点关注对非定常高超声速气动力学的建模和把流体与结构之间的热传递纳入气动弹性求解等两个问题,归纳出了未来高超声速气动弹性力学和气动热弹性力学的发展方向。由于吸气式高超声速飞行器机体、推进系统和控制系统的强耦合性,未来的发展趋势是把先进计算气动热弹性法纳入飞行器的综合分析。  相似文献   

2.
在调研国内外现有热电转换技术的基础上,探索了高超声速飞行器气动热的热利用难题。在现有直接类热电转换技术和热力循环类热电转换技术研究的基础上,提出了基于温差发电和有机朗肯循环热电技术相结合的组合型热利用方案。通过对组合型热电转换方案的热力分析表明,系统热电转换效率可达19.8%。  相似文献   

3.
高超声速弹丸头部气动热研究   总被引:1,自引:1,他引:0  
采用有限体积TVD差分格式求解三维欧拉方程,数值模拟了来流马赫数Ma∞大于5的弹丸流场.利用数值计算求得相关参量,并代入求解热流密度的经验公式,得出弹丸头部的热流密度和温度分布情况.此研究是计算热流密度的尝试.计算结果表明,求出的热流密度分布符合基本规律.  相似文献   

4.
介绍了国外高超声速飞行器的发展现状,并总结了未来一段时期高超声速飞行器的发展方向和趋势.分析了高超声速飞行器的外形选择及其气动问题,发动机的选取与机体一体化问题和气动加热及防热问题.最后提出了未来高超声速飞行技术发展的几个方向.  相似文献   

5.
高超声速气动热环境工程算法   总被引:4,自引:0,他引:4  
对高超声速飞行器气动热环境工程算法进行研究.基于Prandtl边界层理论,将流场分为边界层外的无粘流场和边界层内粘性主导的区域,并将两者的工程算法相结合,发展了一套高超声速气动热的计算方法.对于无粘流区,边界层外缘参数的计算采用完全气体模型和平衡气体模型,利用等熵条件来确定;在边界层内部,基于参考焓方法,采用经典热流密度公式,确定物体表面的气动加热.采用此方法对一些简单三维外形进行了气动热计算,证明所述方法具有较高的精度.  相似文献   

6.
热防护结构设计是实现与推进高超声速飞行器发展的关键技术之一。介绍了高超声速飞行器热防护结构技术研究现状,指出了其发展趋势:由单一的热防护结构向承载/防热一体化结构及多功能一体化结构发展;超高温材料、相变材料、仿生概念和热电技术开始引入热防护结构,并给出了高超声速飞行器热防护结构设计相关建议。  相似文献   

7.
为了准确预测高超声速弹丸表面的气动热问题,在考虑热化学反应的情况下,基于SST k-ω、表面反应和二维非稳态热传导方程,建立了高速流场与弹丸结构紧密耦合的传热模型,并以某外形高超声速弹丸为研究对象,采用数值模拟方法,在不同飞行高度、不同飞行马赫数等条件下对比计算了有、无考虑化学反应时弹丸表面的气动热分布情况。计算结果表明,考虑化学反应对弹丸表面的热流密度有较大影响,弹体表面温度及其驻点处温度均有明显提高; 在飞行马赫数为5.5,飞行时间为1.5 s的情况下,随着飞行高度的增加,弹丸驻点处及弹身表面的温度会降低,但各高度上弹丸驻点处的温度在考虑化学反应较未考虑化学反应时高约200 K; 随着来流马赫数的增加,化学反应产生的热量越多,弹体表面及驻点处的温度增加越大。研究结果对高超声速弹丸的气动热预测与热防护具有一定的参考。  相似文献   

8.
为设计一种新型高超声速滑翔飞行器,采用数值模拟方法对HIFiRE Flight 1所选用的试验飞行器进行改型设计,使其具有良好的气动性能。结果表明:飞行器上表面形状和翼型对其气动性能影响显著,升阻比随上表面迎风面积的减小而升高;当机体不带机翼时,升阻比随马赫数的增加而升高;具有乘波特性的机翼能够给机体提供较高的升阻比;在研究范围内(Ma=4~10),随着马赫数的增加,Model 3的升阻比先增大后减小,当马赫数为8时,升阻比最大。  相似文献   

9.
高超声速飞行器鼻锥的热环境和结构热分析研究   总被引:1,自引:0,他引:1  
基于典型的高超声速气动加热飞行环境,利用热流迭代修正方法对轴对称一体化结构高超声速飞行器鼻锥进行结构温度场分析.首先通过流场计算得到飞行器鼻锥的冷壁边界热流密度分布,并将其作为结构热响应有限元计算的初始边界条件.为了验证计算方法的可执行性,并为计算结果分析比较提供参考数据,首先进行只考虑导热和辐射的计算,不考虑壁面温度变化对热流影响的热流修正迭代计算.而后,针对壁面温度随时间变化,对热流密度进行修正,进行多次迭代计算模拟,用以确定高超声速飞行器鼻锥材料以及结构设计尺寸.  相似文献   

10.
气动加热计算是高超声速再入飞行器的关键技术之一.文中用CFD方法获取边界层外的无粘数值解,代人边界层内工程方法的计算公式,获得热流密度.驻点区热流密度计算采用Fay-Riddle公式,非驻点区采用Eckert参考焓方法.通过与风洞实验和纯粹数值方法的结果相比,验证了采用边界层外无粘数值解和边界层内工程算法相结合来计算飞行器表面热流密度的可行性.  相似文献   

11.
高超声速飞行器结构材料与热防护系统   总被引:6,自引:2,他引:4  
随着人类对高超声速飞行器的不断探索,结构材料和热防护系统已成为高超技术发展的瓶颈。首先介绍了X-51A和X-43A的项目概况、结构材料和热防护系统,然后分别从高超声速试飞器超高温热防护材料、大面积热防护材料和热防护系统等几方面对X-51A和X-43A试飞器进行了分析,最后提出了结构材料和热防护系统发展的关键技术。  相似文献   

12.
热防护技术是高超声速飞行器必须解决的关键技术之一,自1964年高超声速热防护概念首次出现以来,受到越来越多国家和机构的关注。以检索到的公发表的950篇相关文献为分析对象,总结了热防护整体发展态势;并选取NASA兰利研究中心、NASA艾姆斯研究中心、德国国家宇航中心和日本国家空间总署四个机构,详细介绍了机构整体情况、研究主题分布、重要合作对象与核心研究人员;后分析了不同时期高超声速热防护技术的发展情况。  相似文献   

13.
基于N-S方程数值计算方法对高超声速气流中导弹电缆罩封头和其后方的电缆罩外形进行气动热计算,对2种封头外形的气动热进行对比分析,研究了其流动机理和流场结构。结果表明:优化后的与后方电缆罩等宽、等高的封头外形极大地降低了电缆罩的热环境。  相似文献   

14.
为准确预测高超声速飞行器翼面的热环境以利于飞行器的设计。通过数值算例验证了基于参考焓法的气动加热工程算法的可行性;提出了一种高超声速飞行器三维翼面的气动加热、辐射换热、瞬态热传导的准定常耦合求解方法,通过与非耦合的气动加热、辐射换热及瞬态热传导方法相比,指出考虑耦合求解的必要性。在飞行器典型弹道飞行条件下,该耦合求解方法考虑气动加热、辐射换热、结构热传导耦合效应,实现了高超声速三维翼面温度的准确预测,该方法可用于高超声速飞行器气动热分析及热防护设计。  相似文献   

15.
气动、热和结构三学科之间的耦合关系是高速飞行器面临的核心问题之一。文中利用强弱耦合关系简化了气动热结构耦合问题,并基于气动加热、瞬态热传导、热结构、热模态和热颤振的单向耦合关系来分析热弹性问题,建立了气动热结构多学科集成分析平台。针对各子学科耗时问题,文中采用了增广的自适应响应面优化策略完成了气动热结构多学科设计优化,在提高了颤振速度的同时,使升力面结构质量有了一定的降低。  相似文献   

16.
一种高升力高超声速飞行器气动布局设计概念构想   总被引:1,自引:0,他引:1  
为提高飞行器性能和设计效率,降低设计盲目性和性能冗余度,对高升力、面对称高超声速飞行器气动布局、稳定性和与之相关的飞行控制三者之间的关系进行了论述,最后提出了一种引入稳定性和飞行控制因素的再入飞行器气动布局一体化设计概念,以满足高性能高超声速飞行器气动布局设计需求.  相似文献   

17.
高超声速飞行器存在典型的激波与边界层干扰,由此产生的流动分离与再附会带来严重的气动加热问题。采用雷诺平均方法对HIFiRE-1飞行器激波与边界层干扰气动热进行了数值模拟。讨论雷诺数、马赫数等来流参数和飞行器裙体张角、裙体长度等结构参数对气动热的影响,并分析其影响机理。研究结果表明:柱裙拐角处由于存在边界层分离、再附及强烈的激波干涉,导致飞行器壁面存在严重的气动热问题,控制边界层分离和流场结构能有效控制飞行器壁面热环境。改变来流参数和结构参数会对边界层分离、再附和流场结构带来较大影响,具体表现为:来流雷诺数变化时流场结构变化较小,但会大幅度影响再附热流密度;来流马赫数变化时分离激波与飞行器壁面夹角发生变化,相应的气动热有较大变化;裙体张角变化时引起分离区尺度变化,进而改变壁面热流分布;裙体长度变化时影响边界层分离、再附特性,导致壁面热流分布发生变化。  相似文献   

18.
陶瓷基复合材料在高超声速飞行器热防护系统中的应用   总被引:3,自引:0,他引:3  
主要介绍了陶瓷基复合材料制成的热防护系统及热结构在吸气式高超声速飞行器不同部位(包括前缘、机身大面积区域和控制面)上的应用,并指出了存在的问题和面临的技术挑战。  相似文献   

19.
以某型中程弹道导弹头罩在工作时间内的气动加热为研究对象,采用数值求解N-S方程、k-ε湍流模型的方法,得到了导弹头罩温度、热流密度随速度变化的规律。结果表明:头罩在工作时间内随着导弹高度的上升和速度的增加头罩外部的温度增加,热流密度在速度为5 Ma时最大,驻点位置在头罩尖端。  相似文献   

20.
高超声速飞行器热防护的布雷顿热电转化技术   总被引:2,自引:0,他引:2  
针对高超声速飞行器面临的热防护问题,提出了一种布雷顿循环热电转化技术,结合高超声速飞行器的飞行工况,进行了热力学计算,初步得到热电转化的发电效率及发电机功率,并讨论了飞行马赫数、关键部件效率、压比和循环工质对系统性能(发电效率和输出功率)的影响。结果表明,气动热的利用使高超声速飞行器的热电转化成为可能;同时提高关键部件效率,如换热器效率、旋转部件效率可提高发电效率和发电机功率,由于它们之间存在耦合关系,在系统方案设计时需要综合考虑;分析也表明,选择适当的工质可以提高热电转化的发电效率及发电机功率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号