首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incorporation of urea into puddled rice soils is known to reduce ammoniacal-N buildup in floodwater and the subsequent loss of N as ammonia. Little is known, however, about seasonal and temperature effects on the effectiveness of basal urea incorporation in puddled soils. A field experiment was conducted in northern Vietnam on an Aquic Ustifluvent in the spring season (February to June) and summer season (July to November) to determine the effect of the presence of floodwater and method of fertilizer incorporation on floodwater ammoniacal-N, floodwater urea-N, andpNH3 following urea application. During the 4 d following basal urea application, floodwater temperature at 1400 h was 7 to 15°C higher in summer (July) than that in spring (February), and floodwater pH at 1400 h was 0.5 to 1.0 higher in summer than that in spring. ThepNH3 was much higher in summer than that in spring, suggesting a high potential for ammonia volatilization in summer. The movement of transplanters through the field did not reducepNH3, irrespective of floodwater depth (0 or 5 cm) and season. Harrowing and subsequent transplanter movement partially reducedpNH3 in the summer;pNH3 reduction, however, was greater when floodwater depth was 0 rather than 5 cm during harrowing and transplanting. This partial reduction ofpNH3 in summer did not result in a corresponding increase in rice yield, presumably because N losses were only slightly reduced and because yield was constrained by additional factors, such as the adverse climate. In spring, the removal of floodwater before urea application and incorporation increased grain yield by 0.2 Mg ha–1, even thoughpNH3 was consistently low and was not reduced by urea incorporation. This result suggests that water management and tillage during basal urea application may influence rice growth and yield in ways other than reduced N loss.  相似文献   

2.
Losses of nitrogen were investigated after applications of ammonium bicarbonate and urea to flooded rice at transplanting. Ammonia (NH3) volatilization was determined by direct micrometeorological methods, and total loss of fertilizer nitrogen (N) was measured by15N balance. All the loss appeared to be in gaseous forms, since there was no evidence of leaching and runoff was prevented. The difference between N loss and NH3 loss was thus assumed to be denitrification loss.Both NH3 volatilization and denitrification losses were large, being 39% and 33%, respectively, of the ammonium bicarbonate N, and 30% and 33%, respectively, of the urea N applied by farmers' methods.Ammonia fluxes from the field fertilized with ammonium bicarbonate were very high for two days, and then declined rapidly as the NH3 source in the floodwater diminished. Moderate fluxes from the field fertilized with urea continued over 6 days, but calculations showed that NH3 transfer from floodwater to atmosphere was retarded during the middle period of the experiment, particularly on day 2 when a thick algal scum appeared on the water surface. The results indicate that this algal mass obstructed the transport of NH3 across the water-air interface until the scum was dispersed by wind action. Nevertheless, the prolonged NH3 losses on the urea treatment were due primarily to high floodwater pH values promoted by the strong algal growth during the daylight hours.Nitrogen-15 balance studies showed that incorporation of fertilizer into drained soil substantially increased recoveries of fertilizer N in rice plants and soil compared with incorporation of fertilizer in the presence of standing floodwater. Ammonia loss measurements on these treatments when urea was applied suggested that the improvement in fertilizer N efficiency was due mainly to reductions in NH3 loss.  相似文献   

3.
Nitrogen transformations in wetland rice ecosystems   总被引:2,自引:1,他引:2  
In Asia, rice production has increased an average 2.7% annually - due to greater fertilizer use and crop intensification together with varietal improvement and investment in irrigation facilities. Nitrogen efficiency in tropical rice is low.15N recovery rarely exceeds 30–40% in wetland rice production systems. Ammonia (NH3) volatilization and denitrification are recognized as major nitrogen loss mechanisms in such systems. Information on the relative importance of the two loss processes is available for few sites in Asia. The greatest losses of N are reported to occur when the fertilizer treatment leads to a high concentration of ammoniacal N in the floodwater. Results from the studies using micrometereological technique suggest that ammonia volatilization may be the most important loss process in wetland rice ecosystems. Directly measuring denitrification in the field proved more difficult than measuring NH3 volatilization due to difficulty in distinguishing the main end product of denitrification (N2) against a large background of atmospheric N2. However, the directly measured (N2 + N2O) -15N flux for rice in Indonesia, Thailand and the Philippines rice fields was less than 1% of the applied N. Green manure incorporation in wetland rice fields reduced N losses from mineral N source due to resulting lower floodwater pH and lower partial pressure of NH3 (pNH3) than that of urea applied alone. At present, the integrated use of green manure and mineral N is receiving much attention in the hope of meeting farmers' desire to reduce cost of production as well as ecological considerations such as increased methane production which contribute to global climate change. Other promising alternative practices for increasing fertilizer N efficiency include improved timing and application methods, particularly through better incorporation of basal N fertilizer without standing water, deep placement, and use of coated fertilizers.  相似文献   

4.
Field studies were conducted for two years on a rapidly percolating loamy sand (Typic Ustochrept) to evaluate the effect of green manure (GM) on the yield,15N recovery from urea applied to flooded rice, the potential for ammonia loss and uptake of residual fertilizer N by succeeding crops. The GM crop ofSesbania aculeata was grownin situ and incorporated one day before transplanting rice. Urea was broadcast in 0.05 m deep floodwater, and incorporated with a harrow. Green manure significantly increased the yield and N uptake by rice and substituted for a minimum of 60 kg fertilizer N ha–1. The recovery of fertilizer N as indicated by15N recovery was higher in the GM + urea treatments. The grain yield and N uptake by succeeding wheat in the rotation was slightly higher with GM. The recovery of residual fertilizer N as indicated by the15N recovery in the second, third and fourth crops of wheat, rice and wheat was only 3, 1 and 1 per cent of the urea fertilizer applied to the preceding rice crop. Floodwater chemistry parameters showed that the combined use of the GM and 40 kg N ha–1 as urea applied at transplanting resulted in a comparatively higher potential for NH3 loss immediately after fertilizer application. The actual ammonia loss as suggested by the15N recoveries in the rice crop, however, did not appear to be appreciably larger in the GM treatment. It appeared the ammonia loss was restricted by low ammoniacal-N concentration maintained in the floodwater after 2 to 3 days of fertilizer application.  相似文献   

5.
Poor N fertilizer use efficiency by flooded rice is caused by gaseous losses of N. Improved fertilizer management and use of nitrification inhibitors may reduce N losses. A microplot study using15N-labelled urea was conducted to investigate the effects of fertilizer application method (urea broadcast, incorporated, deep-placed) and nitrification inhibitor [encapsulated calcium carbide (ECC)] treatments on emission of N2+N20 and total loss of applied N on a grey clay near Griffith, NSW, Australia. Both incorporation and deep placement of urea decreased N2+N2O emission compared to urea broadcast into the floodwater. Addition of ECC significantly (P < 0.05) reduced emission of N2+N20 from incorporated or deep-placed urea and resulted in increased exchangeable ammonium concentrations in the soil in both treatments. Fifty percent of the applied N was lost when urea was broadcast into the floodwater. Total N loss from the applied N was significantly (P < 0.05) reduced when urea was either incorporated or deep placed. In the presence of ECC the losses were reduced further and the lowest loss (34.2% of the applied N) was noted when urea was deep-placed with ECC.  相似文献   

6.
N-use efficiency in flooded tropical rice is usually low. Fertilizer N losses result mainly from losses of volatile NH3 after broadcast application of urea into floodwater between transplanting and early tillering which is a common practice of farmers. Losses appear predominantly during the first week after urea application. With broadcast and incorporation of N into soil at transplanting losses may be reduced but are still substantial. Deep placement of urea supergranules (USG) has not been adopted by farmers because it is very laborious. A new application technique, namely injection of dissolved urea into the upper soil layer, was developed by which fertilizer N losses were effectively minimized while at the same time allowing flexible timing of application independent of crop stage and water management. It provides N-use efficiency equal to that achieved by USG point placement but is less labor-intensive.  相似文献   

7.
In a pot experiment it was established that NH4 volatilization losses were larger with urea than with ammonium sulphate used as a basal fertilizer for lowland rice. The difference arose from the pH-increasing effect of urea in the floodwater. This rise in pH promoted the growth of algae which in turn were responsible for large diurnal fluctuations in the pH of the floodwater thus enhancing the loss of NH3 during daytime. Ammonium sulphate lowered the pH of the water which suppressed the growth of algae.Once the rice canopy had closed, the algal population declined and the diurnal pH fluctuations largely disappeared. Urea as a topdressing was found to be less liable to give rise to NH3 volatilization than when added as basal dressing. The highest N recovery was obtained with ammonium sulphate used as basal dressing and urea as topdressing. Working a basal dressing into the soil improves the fertilizer-N recovery of urea-N, but not of ammonium sulphate-N, the latter being already high without soil incorporation.  相似文献   

8.
Field experiments were conducted during 1988–1989 at two adjacent sites on an acid sulfate soil (Sulfic Tropaquept) in Thailand to determine the influence of urea fertilization practices on lowland rice yield and N use efficiency. Almost all the unhydrolyzed urea completely disappeared from the floodwater within 8 to 10 d following urea application. A maximum partial pressure of ammonia (pNH3) value of 0.14 Pa and an elevation in floodwater pH to about 7.5 following urea application suggest that appreciable loss of NH3 could occur from this soil if wind speeds were favorable. Grain yields and N uptake were significantly increased with applied N over the control and affected by urea fertilization practices (4.7–5.7 Mg ha–1 in dry season and 3.0–4.1 Mg ha–1 in wet season). In terms of both grain yield and N uptake, incorporation treatments of urea as well as urea broadcasting onto drained soil followed by flooding 2 d later were more effective than the treatments in which the same fertilizer was broadcast directly into the floodwater either shortly or 10 d after transplanting (DT). The15N balance studies conducted in the wet season showed that N losses could be reduced to 31% of applied N by broadcasting of urea onto drained soil and flooding 2 d later compared with 52% loss by broadcasting of urea into floodwater at 10 DT. Gaseous N loss via NH3 volatilization was probably responsible for the poor efficiency of broadcast urea in this study.  相似文献   

9.
Field experiments were conducted in Central Thailand under a rice–fallow–rice cropping sequence during consecutive dry and wet seasons of 1998 to determine the impact of residue management on fertilizer nitrogen (N) use. Treatments consisted of a combination of broadcast urea (70 kg N ha–1) with rice straw (C/N 67) and rice hull ash (C/N 76), which were incorporated into the puddled soil 1 week before transplanting at a rate of 5 Mg ha–1. Nitrogen-15 balance data showed that the dry season rice recovered 10 to 20% of fertilizer N at maturity. Of the applied N, 27 to 36% remained in the soil. Loss of N (unaccounted for) from the soil–plant system ranged from 47 to 54% of applied N. The availability of the residue fertilizer N to a subsequent rice crop was only less than 3% of the initial applied N. During both season fallows NO3-N remained the dominant form of mineral-N (NO3+NH4) in the aerobic soil. In the dry season grain yield response to N application was significant (P=0.05). Organic material sources did not significantly change grain yield and N accumulation in rice. In terms of grain yields and N uptake at maturity, there was no significant residual effect of fertilizer N on the subsequent rice crop. The combined use of organic residues with urea did not improve N use efficiency, reduced N losses nor produced higher yields compared to urea alone. These results suggested that mechanisms such as N loss through gaseous N emissions may account for the low fertilizer N use efficiency from this rice cropping system. Splitting fertilizer N application should be considered on the fertilizer N use from the organic residue amendment.  相似文献   

10.
In experiments with transplanted rice (Oryza sativa L.) at the Central Soil Salinity Research Institute, Karnal, India, two methods of application of granular urea, wholly as basal dose U(W) or in splits U(S) were compared with deep, point placement (8 cm) of urea supergranules and broadcast application of two slow-release sources, sulphur-coated urea (SCU) and lac-coated urea (LCU). Comparisons were made in wet season 1984 and 1985 on the basis of ammoniacal N concentration and pH of floodwater, ammonia volatilization, rice yield and N uptake.In 1984 the highest peak concentrations of ammoniacal N (AN) in the floodwater, > 12g m–3, and ammonia volatilization losses 54% of applied N were produced in U(W). Application of N in splits U(S) reduced peak AN levels 5g m–3 and losses to 45.1%. LCU was ineffective in reducing peak AN levels ( 7.5g m–3) or losses (43.6%). However SCU and USG were effective in reducing peak AN levels to < 2g m–3 and N losses to 16.9 and 3.4% respectively. Total ammonia volatilization losses as well as the initial rate of loss correlated very well with the peak levels (second day) of AN, NH3 (aq.) as well as equilibrium vapour pressure of NH3. Floodwater pH was between 9.5 and 10.0.Split application of granular urea was generally more efficient in terms of yield and N recovery (41.4%, average of two years) as compared to whole application (29.5%). LCU was ineffective in improving grain yields or N recovery (30.9%). SCU was ineffective in improving grain yields but improved N recovery to 57.9%., USG increased grain yields only in first year by 19% over U(S) and improved N uptake to 60.5%. A negative linear relationship was established between N uptake by rice at harvest and AN levels in floodwater two days after fertilization which can be used as an index to evaluate fertilizers.  相似文献   

11.
When urea or ammoniacal-N fertilizers are applied to the floodwater of a rice crop, fertilizer use efficiency is often reduced because there are substantial losses of NH3 by volatilization. As pH rises the potential loss increases exponentially due to the increasing dominance of volatile NH3 gas in equilibrium with NH 4 + . We postulate that the daytime pH rise is caused mainly by photosynthesis of algae and Cyanobacteria, and that addition of a suitable photosynthetic inhibitor, concurrently with fertilizer, should suppress the pH rise, thus conserving N in the form of the non-volatile NH 4 + . We selected terbutryne (2-(tert-butylamino)-4-(ethylamino)-6-(methylthio)-s-triazine) as the most promising inhibitor. In rice floodwater fertilized with urea the addition of terbutryne dampened the diurnal fluctuation in pH for 6 days and significantly increased the ammoniacal-N (AN) concentration measured in the floodwater. The concentration of ammonia gas in the air in equilibrium with the water, 0, which is proportional to the gaseous flux of NH3 at a given wind speed, was substantially reduced by terbutryne addition. Maximum values were reduced by over 50%. Terbutryne reduced the calculated cumulative NH3 emission by 43%, relative to the fertilizer (N + P) control. Terbutryne also suppressed photosynthetic oxygen production. Therefore, it may reduce N fertilizer losses by inhibiting nitrification, an aerobic process, so retarding subsequent denitrification losses of gaseous nitrogen and nitrogen oxides.Part of the supporting documentation for Fertilization of Crops. International Patent Application PCT/AU86/00093 filed 11 April 1986.  相似文献   

12.
Laboratory and greenhouse experiments were conducted to determine whether the efficiency of broadcast urea in wetland rice cultivation can be improved by using large granules which penetrate the puddled soil. In laboratory experiments the penetration increased with increasing granule size. Penetration was improved by having only a waterfilm on the soil and by the granules entering the soil with speed.In pot experiments with rice, N concentrations in the floodwater were lower with large granular urea (LGU, 6 to 8 mm diameter) dropped from a height of 2 m or shot with force into the puddled soil than with either prilled urea (PU) or LGU placed on top of the soil (+0cm). N concentrations in the floodwater were reduced even further by placement of LGU at 1 and 4 cm depths (–1 and –4cm, respectively). At all rates of N, the N uptake by grain plus straw increased with decreasing N concentrations in the floodwater. The apparent recovery of N in grain plus straw increased in an experiment on sandy soil from 61 to 85% in the order PU +0cm, LGU +0cm, LGU dropped, LGU –1cm, LGU shot and LGU –4cm. In an experiment on clay soil apparent recovery increased from 47 to 90% in the order PU +0cm, LGU +0cm, LGU dropped, LGU –0cm, LGU shot, LGU –1cm and LGU –4cm. LGU placed at –1 and –4cm resulted in significantly greater N uptake by grain plus straw than the other treatments.The experiments showed that the efficiency of broadcast urea is improved by using large urea granules, at least when conditions are favourable for penetration into the puddled soil.  相似文献   

13.
Fertilizer was applied as urea alone or as a mixture of urea and magnesium sulphate (MgSO4·1H2O) to study the effect on ammonia volatilization under laboratory conditions in relation to soil texture, N:Mg ratio, air flow rate, fertilizer form (solid or liquid) and organic material. When the mixture of urea and magnesium sulphate (UMM) was applied at a ratio of 1:0.21, significantly lower NH3-N losses than from urea were found in 2 of 6 soils, and 4 soils showed a similar tendency. Increasing the N:Mg ratio to 1:0.5 resulted in significantly lower NH3-N loss. Lower air flow rates reduced ammonia loss from UMM more than from urea alone. The effectiveness of UMM over urea was not improved in the liquid form. Increase of organic material had no influence on NH3-N loss from urea alone or UMM.  相似文献   

14.
Control of gaseous nitrogen losses from urea applied to flooded rice soils   总被引:2,自引:0,他引:2  
This paper reports field experiments designed to determine whether the two main processes responsible for nitrogen (N) loss from flooded rice (ammonia volatilization and denitrification) are independent or interdependent, and glasshouse studies which investigated the effect of soil characteristics on gaseous nitrogen loss.In the first field experiment ammonia (NH3) loss from the floodwater was controlled using algicides, biocides, frequent pH adjustment, shade or cetyl alcohol, and the effect of these treatments on total N loss and denitrification was determined. Most treatments reduced NH3 loss through their effects on algal growth and floodwater pH. Total gaseous N loss (54% to 35%) and NH3 loss (20% to 1.2%) were affected similarly by individual treatments, indicating that the amount lost by denitrification was not substantially changed by any of the treatments.In a subsequent field experiment NH3 and total N loss were again affected similarly by the treatments, but denitrification losses were very low. In control treatments with different rates of urea application, NH3 and total N loss were each a constant proportion of the urea applied (NH3 loss was 17% and total N loss was 24%). These results indicate that techniques which reduce NH3 loss can be expected to reduce total gaseous N loss.The glasshouse experiment showed that gaseous N losses could be reduced by draining off the floodwater, and incorporating the urea into the 0–0.05 m soil layer before reflooding. Even with this method, losses varied widely (6–27%); losses were least from a cracking clay and greatest from a coarse sand which allowed the greatest mobility of the applied N. Incorporation of applied urea can therefore be expected to prevent losses more successfully from clay soils with high ammonium retention capacity.  相似文献   

15.
Urease activity and inhibition in flooded soil systems   总被引:8,自引:0,他引:8  
Ammonia volatilization is an important mechanism of N loss from flooded rice soils. Inhibition of urease may delay the formation of conditions favorable to NH3 volatilization in the floodwater, thus giving the soil and plant a better chance to compete with the atmosphere as a sink for N. The experiments reported here were designed to identify the site of urea hydrolysis in flooded soils and to attempt selective urease inhibition with some of the inhibitors reported in the literature.Studies with three flooded soils using15N-labeled urea showed that 50–60% of the urea was found in the floodwater, despite incorporation. This floodwater urea is hydrolyzed largely at the soil—floodwater interface and subsequently returns to the floodwater (> 80%) or is retained by the soil (< 20%). Of the following urease inhibitors (K-ethyl-xanthate; 3 amino-1-H-1, 2, 4-triazole; phenylphosphorodiamidate) added at 2% (w/w of urea), only the latter was able to delay the appearance of NH3 (aq) in the flood-water and thus delay NH3 volatilization. Use of an algicide addition to the floodwater depressed NH3 (aq) levels during the entire period studied, but in the presence of PPD the algicide had little additional effect.  相似文献   

16.
Ammonia volatilization losses and other N transformations were studied in drill sown rice bays fertilized with urea at various times between permanent flooding (PF) and panicle initiation (PI). Ammonia loss was measured directly with flow chambers and indirectly through application of Freney et al.'s (1985) model. Both techniques indicated that ammonia volatilization was negligible from fields fertilized immediately before PF. Applying 100 kg urea-N ha–1 to floodwater one day after flooding significantly increased floodwater ammoniacal-N and urea-N content, however the concentrations fell rapidly over the following five days. Fertilizer-N dissolved in the floodwater was in the urea rather than the ammoniacal-N form, indicating slow hydrolysis until it moved into the soil. Floodwater on plots receiving urea one day after PF frequently had more than double the NO3-N concentration of plots fertilized before flooding.Applying up to 140 kg urea-N ha–1 at PI increased floodwater ammoniacal-N concentrations from almost zero to over 27 g m–3, but three days after fertilization there was less than 3 g m–3 present. Fertilization also increased NH4-N concentration in the top 40 mm of soil. Higher ammoniacal-N concentration at PI suggests higher urease activity. Floodwater pH at PI was low, with a mean daily maximum of 7.8 and this reduced ammonia loss to less than 1% of the applied N.The results indicate that volatilization from fields fertilized prior to PF is minimal because of the low floodwater pH and ammoniacal-N concentration, while low floodwater pH restricts volatilization from fields topdressed at PI.  相似文献   

17.
Effect of algicides on urea fertilizer efficiency in transplanted rice   总被引:1,自引:0,他引:1  
The effects of the algicides terbutryn and copper sulfate on the potential for reducing the gaseous loss of NH3 from urea applied to rice were examined in experiments with 2 methods of N fertilizer management, 2 or 3 N rates, and 3 algicide treatments. The experiments were conducted during the 1986 dry and wet seasons in an experimental field at Pila, Laguna, Philippines.Copper sulfate had little effect as an algicide at the rate used, but terbutryn immediately reduced algal growth. The populations of species resistant to terbutryn probably increased, but terbutryn had no long-term effect on the total number of colony-forming units of algae. There was some evidence that terbutryn reduced photodependent N2 fixation as estimated by acetylene reduction assay.Terbutryn, when applied with urea 10 days after transplanting, reduced the maximum floodwater pH by 0.9 units or more for 7 d in the DS and by about 0.5 units for 8 d in the WS. Terbutryn increased the ammoniacal-N (AN) concentration in the floodwater 100% or more in the DS and 60% in the WS. The combined effect of terbutryn on the floodwater pH and AN concentration was reduced photodependent NH3 partial pressure (NH3), about 25% in the DS and 38% in the WS. deceased  相似文献   

18.
Experiments were conducted to monitor the movement and distribution of ammonium-N after placement of urea and ammonium sulfate supergranules at 5, 7.5, 10, and 15 cm. By varying depths of fertilizer placement, it is possible to determine the appropriate depth for placement machines. There were no significant differences in grain yields with nitrogen placed 5 and 15 cm deep. However, grain yields were significantly higher with deep placement of nitrogen than with split application of the fertilizer. The lower yields with split-applied nitrogen were due to higher nitrogen losses from the floodwater. The floodwater with split application had 78–98µg N ml–1 and that with deep-placed nitrogen had a negligible nitrogen concentration.Movement of NH 4 + -N in the soil was traced for various depths after fertilizer nitrogen application. The general movement after deep-placement of the ammonium sulfate supergranules was downward > lateral > upward from the placement site. Downward movement was prevalent in the dry season: fertilizer placed at 5–7.5 cm produced a peak of NH 4 + -N concentration at 8–12 cm soil depth; with placement at 15 cm, the fertilizer moved to 12–20 cm soil depth. Fertilizer placed at 10 cm tended to be stable. In the wet season, deep-placed N fertilizer was fairly stable and downward movement was minimal.A substantially greater percentage of plant N was derived from15N-depleted fertilizer when deep-placed in the reduced soil layer than that applied in split doses. The percent N recovery with different placement depths, however, did not vary from each other. The results suggest that nitrogen placement at a 5-cm soil depth is adequate for high rice yields in a clayey soil with good water control. In farmers' fields where soil and water conditions are often less than ideal, however, it is desirable to place nitrogen fertilizer at greater depths and minimize NH 4 + -N concentration in floodwater.  相似文献   

19.
This paper reports a study on the distribution of dinitrogen between the atmosphere, floodwater and porewater of the soil in a flooded rice field after addition of15N-labelled urea into the floodwater.Microplots (0.086 m2) were established in a rice field near Griffith, N.S.W., and labelled urea (80 kg N ha–1 containing 79.25 atoms %15N) was added to the floodwater when the rice was at the panicle initiation stage. Emission of nitrous oxide and dinitrogen was measured directly during the day and overnight, using a cover collection method and gas chromatographic and mass spectrometric analytical methods. Ammonia volatilization was calculated with a bulk aerodynamic method from measurements of wind speed and floodwater pH, temperature and ammoniacal nitrogen concentration. Seven days after urea application the15N2 content of the floodwater and soil porewater was determined and total fertilizer nitrogen loss was calculated from an isotopic balance.Throughout the experimental period gas fluxes were low; nitrous oxide, ammonia and dinitrogen flux densities were less than 5, 170 and 720 g N ha–1 d–1, respectively. The greatest dinitrogen flux density was observed two days after urea addition and this declined to ~ 100 g ha–1 d–1 after seven days.The data indicate that, of the urea nitrogen added, 0.02% was lost to the atmosphere as nitrous oxide, 0.9% was lost by ammonia volatilization, and 3.6% was lost as dinitrogen gas during the 7 days of measurement. At the end of this period 0.028% and 0.002% of the added nitrogen was retained as dinitrogen gas in the floodwater and soil porewater respectively. Recovery of the15N applied as nitrogen gases, plant uptake, and soil and floodwater constituents totaled about 94% of the nitrogen added.  相似文献   

20.
The compound N-(n-butyl) thiophosphoric triamide (NBPT) was found to be a more effective ureas inhibitor than phenyl phosphorodiamidate (PPDA) in flooded soils when compared at concentrations of from 0.5 to 5% of the weight of urea. It allowed essentially no ammoniacal-N to acumulate in the floodwater when added at 0.5% of the weight of urea. The fate of urea was also determined in a flooded, unplanted soil with NBPT used as an inhibitor at a rate of 2% by weight of urea. At 41 days, fertilizer-N loss without the inhibitor was 73.4%, whereas with NBPT, 34.7% of the fertilizer was lost, presumably all by denitrification. With NBPT, urea hydrolysis was not inhibited below a 1 cm depth in the soil and most of the N (35.0%) accumulated as exchangeable NH 4 + -N. Except for 15.0% of the fertilized accumulated as organic-N on the soil surface layer, immobilized N accounted for only an additional 7.0% in the soil at 22 days. Although the N saved from NH3 volatilization loss obviously is eligible for denitrification losses, denitrification apparently was not enhanced to an appreciable extent by use of the inhibitor in that total losses were 15.7% at 22 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号