首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-cycle fatigue features of over 108 cycles, particularly the initiation and propagation of edge delamination considering the effects of transverse cracks, were investigated using quasi-isotropic carbon-fiber-reinforced plastic (CFRP) laminates with a stacking sequence of [45/0/−45/90]s in this study. In the relationship between a transverse crack density and initiation and growth of edge delamination, it was found that fatigue damage growth behavior varied depending on applied stress. It was observed that edge delamination initiated and grew at parts where transverse cracks were dense at ordinary applied stress, whereas it was observed that edge delamination grew before or simultaneously with transverse crack propagation at a low applied stress and high-cycle loading. In addition, the critical transverse crack density where delamination begins growing was calculated to evaluate the interaction between transverse crack and edge delamination growth.  相似文献   

2.
Fatigue crack growth test of AZ61 magnesium alloy was carried out under immersed NaCl environment at frequencies of 15, 5 and 0.5 Hz under a stress ratio of 0.1. In order to investigate the effect of frequency on fatigue crack growth behavior in detail, additional tests at frequencies ranged from 15 to 0.01 Hz were conducted under a constant ΔK of 3.25 MPa m1/2. Effect of frequency was clearly observed in low ΔK region, where fatigue crack growth rate decreased with decreasing frequency. Crack closure would be a dominant factor for the frequency effect observed under immersed NaCl environment at frequencies ranged from 15 to 0.5 Hz. However, fatigue crack growth rates at frequencies lower than 0.05 Hz were higher than those at frequencies higher than 0.5 Hz. The accelerated fatigue crack growth rates at frequencies lower than 0.05 Hz would be attributed to the corrosion attack at the crack tip.  相似文献   

3.
In the present work, fatigue crack growth tests of epoxy resin composite reinforced with silica particle under various R-ratios were carried out to investigate the effect of R-ratio on crack growth behavior and to discuss fatigue crack growth mechanism. Crack growth curves arranged by ΔK showed clear R-ratio dependence even under no crack closure, where the values of ΔKth were 0.82 and 0.33 MPa √m for R = 0.1 and 0.7 respectively. However, crack growth curves arranged by Kmax merged into almost one curve regardless of R-ratio, which indicated that crack growth behavior of the present composite was time-dependent. The value of Kmax,th were in the range from 0.78 to 1.12 MPa √m. In situ crack growth observation revealed the crack growth mechanism: micro-cracking near the interface between silica particle and resin matrix occurs ahead of a main crack and then micro-cracks coalesce with a main crack to grow. The crack path was in the epoxy matrix, which was consistent with the time-dependent crack growth.  相似文献   

4.
Interfacial fatigue crack growth behavior in GF/epoxy model composites was investigated using bifiber shear (BFS) specimens in a scanning electron microscope. The specimen is composed of two E-glass filaments with diameters of 23 and 40 μm, and bisphenol A type epoxy is impregnated between the filaments. The crack growth behavior under different stress ratios was investigated to clarify the fatigue crack growth mechanism. The change in the crack growth rate, da/dN, was not monotonic with crack length, suggesting a variation in the resistance to fatigue crack growth along a single filament. The resistance to fatigue crack growth of the interface is much smaller than that of composite laminates. The fatigue crack growth mechanism of the glass fiber/epoxy interface under different stress ratios is controlled by the maximum energy release rate, Gmax, which is completely different from that of composite laminates.  相似文献   

5.
The fatigue mechanisms of Glass Fibre Reinforced Polymer (GFRP) used in wind turbine blades were examined using computed tomography (CT). Prior to mechanical testing, as-manufactured [+45/−45/0]3,s glass/epoxy specimens were CT scanned to provide 3-dimensional images of their internal microstructure, including voids. Voids were segmented and extracted, and individual characteristics and volumetric distributions were quantified. The coupons were then fatigue tested in uniaxial loading at R = −1% to 40% of the nominal tensile failure stress. Some tests were conducted to failure for correlation with the initial void analysis and to establish failure modes. Other tests were stopped at various life fractions and examined using CT to identify key damage mechanisms. These scans revealed transverse matrix cracking in the surface layer, occurring predominantly at free edges. These free-edge cracks then appeared to facilitate edge delamination at the 45/−45° interface. Propagation from sub-critical, surface ply damage to critical, inner ply damage was identified with either a −45/0° delamination, or a 0° fibre tow failure allowing a crack to propagate into the specimen bulk. Final failure occurred in compression and was characterised by total delamination between all the 45/−45° plies. A quantitative void analysis, taken from the pre-test CT scans, was also performed and compared against the specimens’ fatigue lives. This analysis, to the authors’ knowledge the first of its kind, measured and plotted approximately 10,000 voids within the gauge length of each specimen. The global void measurement parameters and distributions showed no correlation with fatigue life. A local ply-level investigation revealed a significant correlation between the largest void and fatigue life in the region of the laminate associated with the crack propagation from sub-critical to critical damage.  相似文献   

6.
Nanocomposites of poly(methyl methacrylate) (PMMA) containing various multi-walled carbon nanotubes (MWCNT) contents were prepared using melt mixing. Several techniques were employed to study the influence of the MWCNT addition on the thermal, mechanical, electrical and dielectric properties of the PMMA matrix. The electrical percolation threshold (pc) was found to be 0.5 vol.% by performing AC and DC conductivity measurements. Significantly high conductivity levels (σdc) were achieved: σdc exceeds 10−2 S/cm already at 1.1 vol.%, the criterion for EMI shielding (σdc > 10−1 S/cm) is fulfilled at 2.9 vol.%, and the highest loaded sample (5.2 vol.%) gave a maximum value of 0.5 S/cm. Dielectric relaxation spectroscopy measurements in broad frequency (10−1−106 Hz) and temperature ranges (−150 to 170 °C) indicated weak polymer-filler interactions, in consistency with differential scanning calorimetry and dynamic-mechanical analysis findings. Weak polymer-filler interactions and absence of crystallinity facilitate the achievement of high conductivity levels in the nanocomposites.  相似文献   

7.
High temperature fatigue (R=0) damage and deformation behaviors of SUS304 steel thermally sprayed with Al2O3/NiCr coating were investigated using an electronic speckle pattern interferometry (ESPI) method. Surface cracks and delamination occurred after 1×105 cycles test when σmax was 202 MPa at 873 K. The lengths and number of cracks and delamination largely decreased when σmax or temperature decreased to 115 MPa or 573 K, respectively. Strain values along cracks measured with the ESPI method were much larger than other areas due to crack opening under the tensile load. The positions of strain concentration zones on strain distribution figures by ESPI method were well corresponded to those of cracks on sprayed coatings. Strain values decreased largely where local delamination occurred.  相似文献   

8.
Axial loading fatigue tests were carried out to study the influence of inclusion on high cycle fatigue behavior of a high V alloyed powder metallurgy cold-working tool steel (AISI 11). The fatigue strength of 1538 MPa with endurance life of 107 cycles were obtained by stair-case method. The fatigue specimens were also subjected to a constant maximum stress of 1650 MPa to investigate the relationship among inclusion origin size (10-30 μm), fish-eye size (70-130 μm) and fatigue life (105-107 cycles). The fatigue life was found to be dependent on the inclusion size and the crack propagating length. A compressive residual stress of 300-450 MPa turned out to be present at the specimen surface, and finally induced the interior failure mode. Further investigation into the correlation between stress intensity factors of inclusion origin and corresponding stages of fatigue crack growth and fatigue life revealed that the high cycle fatigue behavior was controlled by crack propagation. According to the fractographic investigation, two distinct zones were observed in fish-eye, representing Paris-Law and fast fatigue crack growth stage, respectively. Threshold stress intensity for crack propagation of 3.9 MPa√m was obtained from the well correlated line on the ΔKI-log N? graph. The fracture toughness can also be estimated by the mean value of stress intensity factor ranges for fish-eye.  相似文献   

9.
The glass-forming region in the pseudo-ternary CdSe-AgI-As2Se3 system was determined. Measurements including differential scanning calorimetry (DSC), density, and X-ray diffraction were performed. The effect resulting from the addition of CdSe or AgI has been highlighted by examining three series of different base glasses. The characteristic temperatures of the glass samples, including glass transition (Tg), crystallisation (Tx), and melting (Tm) temperatures are reported and used to calculate their ΔT = Tx − Tg and their Hruby, Hr = (Tx − Tg)/(Tm − Tx), criteria. Evolution of the total electrical conductivity σ and the room temperature conductivity σ298 was also studied. The terahertz transparency domain in the 50-600 cm−1 region was pointed for different chalcogenide glasses (ChGs) and the potential of the THz spectroscopy was suggested to obtain structural information on ChGs.  相似文献   

10.
The fatigue behavior of a SiC/SiC CMC (ceramic matrix composite) was investigated at 1200 °C in laboratory air and in steam environment. The composite consists of a SiC matrix reinforced with laminated woven Hi-Nicalon™ fibers. Fiber preforms had boron nitride fiber coating applied and were then densified with CVI SiC. Tensile stress-strain behavior and tensile properties were evaluated at 1200 °C. Tension-tension fatigue tests were conducted at frequencies of 0.1, 1.0, and 10 Hz for fatigue stresses ranging from 80 to 120 MPa in air and from 60 to 110 MPa in steam. Fatigue run-out was defined as 105 cycles at the frequency of 0.1 Hz and as 2 × 105 cycles at the frequencies of 1.0 and 10 Hz. Presence of steam significantly degraded the fatigue performance. In both test environments the fatigue limit and fatigue lifetime decreased with increasing frequency. Specimens that achieved run-out were subjected to tensile tests to failure to characterize the retained tensile properties. The material retained 100% of its tensile strength, yet modulus loss up to 22% was observed. Composite microstructure, as well as damage and failure mechanisms were investigated.  相似文献   

11.
Chemical preparation, X-ray characterization, IR spectroscopy and thermal analysis of a new cyclotriphosphate: (C7H10NO)3P3O9·4H2O abbreviated as OACTP, are reported. This mixed organo-mineral compound crystallizes in the monoclinic system with P21/n space group, the unit cell dimensions are: a = 6.605(3) Å, b = 26.166(3) Å, c = 18.671(8) Å, β = 91.95(3)°, Z = 4 and V = 3255(2) Å3. The structure was solved using a direct method and refined to a reliability R-factor of 0.043 using 3931 independent reflections (I > 2σI). Atomic arrangement exhibits infinite (P3O9·2H2O)n3n chains connected by organic cations. The thermal behavior and the IR spectroscopic studies of this new compound are discussed.  相似文献   

12.
Differential scanning calorimetry (DSC), infrared (IR) and direct current (DC) conductivity studies have been carried out on (100 − 2x)TeO2-xAg2O-xWO3 (7.5 ≤ x ≤ 30) glass system. The IR studies show that the structure of glass network consists of [TeO4], [TeO3]/[TeO3+1], [WO4] units. Thermal properties such as the glass transition (Tg), onset crystallization (To), thermal stability (ΔT), glass transition width (ΔTg), heat capacities in the glassy and liquid state (Cpg and Cpl), heat capacity change (ΔCp) and ratios Cpl/Cpg of the glass systems were calculated. The highest thermal stability (237 °C) obtained in 55TeO2-22.5Ag2O-22.5WO3 glass suggests that this new glass may be a potentially useful candidate material host for rare earth doped optical fibers. The DC conductivity of glasses was measured in temperature region 27-260 °C, the activation energy (Eact) values varied from 1.393 to 0.272 eV and for the temperature interval 170-260 °C, the values of conductivity (σ) of glasses varied from 8.79 × 10−9 to 1.47 × 10−6 S cm−1.  相似文献   

13.
The electrical behavior of PrCrO3 ceramics prepared by citric acid route and sintered at 1200 °C has been characterized by a combination of permittivity measurements, and impedance spectroscopy (IS). The effective permittivity obtained in frequency range 100 Hz to 1 MHz and temperature range 80–300 K, exhibits giant permittivity value of 3 × 104 near room temperature. The response is similar to that observed for relaxor ferroelectrics. IS data analysis revealed the ceramics to be electrically heterogeneous semiconductor with room temperature resistivity <102 Ω m consisting of semiconducting grains with permittivity ?′ ∼ 100 and more resistive grain boundaries with effective permittivity ?′ ∼ 104. We conclude, therefore that grain boundary effect is the primary source for the high effective permittivity in PrCrO3 ceramics.  相似文献   

14.
Titanium-45S5 Bioglass nanocomposites were synthesized by the combination of mechanical alloying and powder metallurgy process. The structure, mechanical and corrosion properties of these materials were investigated. Microhardness test showed that the obtained material exhibits Vicker’s microhardness as high as 770 HV0.2 for Ti-20 wt.% 45S5 Bioglass, which is more than three times higher than that of a conventional microcrystalline titanium (225 HV0.2). Additionally, titanium-10 wt.% of 45S5 Bioglass nanocomposites (ic = 1.20 × 10−7 A/cm2, Ec = −0.42 V vs. SCE) were more corrosion resistant than microcrystalline titanium (ic = 2.27 × 10−6 A/cm2, Ec = −0.36 V vs. SCE). In vitro biocompatibility of these materials was evaluated and compared with a conventional microcrystalline titanium, where normal human osteoblast (NHOst) cells from Cambrex (CC-2538) were cultured on the disks of the materials and cell growth was examined. The morphology of the cell cultures obtained on Ti-10 wt.% 45S5 Bioglass nanocomposite was similar to those obtained on the microcrystalline titanium. Mechanical alloying and powder metallurgy process for the fabrication of titanium-45S5 Bioglass nanocomposites with a unique microstructure, higher hardness, lower Young’s modulus and better corrosion resistance, in comparison to microcrystalline titanium, were developed. On the other hand, Ti-10 wt.% 45S5 Bioglass composites posses higher fracture toughness compared to 45S5 Bioglass. The proper modification of chemical composition and microstructure of Ti-bioceramic nanocomposites can expand the use of titanium in the biomedical fields.  相似文献   

15.
Vicker's and Knoop microhardness studies were carried out on grown calcium hydrogen phosphate dihydrate (CaHPO4·2H2O) crystals over a load range of 10-50 g. The Vickers (HV) and Knoop (HK) microhardness numbers for the above loads were found to be in the range of 94-170 kg/mm2 and 28-35 kg/mm2 respectively. It was also found that these numbers increased with increase in load. The Mayer's index (n) was found to be greater than 1.6 showing soft-material characteristics. The fracture toughness values (Kc), determined from measurements of crack length, were estimated to be 6 ± 0.5 × 103 kg m−3/2 and 4.5 ± 0.5 × 103 kg m−3/2 at 25 g and 50 g respectively. The brittleness indices (Bi) were found as 2.3 ± 0.1 × 104 m−1/2 for 25 g and 3.7 ± 0.1 × 104 m−1/2 for 50 g. Using Wooster's empirical relation, the elastic stiffness coefficient (c11) has been calculated from Vicker's hardness values as 4.8 ± 0.5 × 1015 Pa for 10 g, 9.7 ± 0.5 × 1015 Pa for 25 g and 13.3 ± 0.5 × 1015 Pa for 50 g. The Young's modulus was calculated as 1.5 ± 0.1 × 1010 N m−2 from Knoop microhardness values.  相似文献   

16.
Compressive fracture behavior under transverse and longitudinal compressive loading are determined for 3D needle-punched carbon/carbon (C/C) composites with single rough laminar (RL) pyrocarbon matrix or dual matrix of RL pyrocarbon and resin carbon. The results of Weibull statistics analysis indicate that scale parameter σ0 of transverse and longitudinal compression of the composites with single matrix are 153.41 and 94.26 MPa, and σ0 of the composites with dual matrix are 205.16 and 105.33 MPa, respectively. The mean compressive strength of both composites is nearly equal to σ0 under each experimental condition. Failure modes of both composites under transverse and longitudinal compressive loading are shear and extension, respectively. Both composites exhibit quasi-ductile fracture behavior under transverse compression. Many small fragments of fibers and matrix carbon on the fracture surface of the composites are observed for single matrix composites. And the fiber bundle breakage with extensive debonding occurs for dual matrix composites. Under longitudinal loading, the composites with single matrix show quasi-ductile fracture behavior and delamination and splitting of non-woven long carbon fiber cloth layers are observed. The composites with dual matrix exhibit catastrophic failure behavior and crack runs through the composites along compressive loading direction.  相似文献   

17.
Experimental investigations on flax and glass fabrics reinforced epoxy specimens, i.e. FFRE and GFRE, submitted to fatigue tests are presented in this paper. Samples having [0/90]3S and [±45]3S stacking sequences, with similar fibre volume fractions have been tested under tension–tension fatigue loading. The specific stress-number of cycles to failure (SN) curves, show that for the [0/90]3S specimens, FFRE have lower fatigue endurance than GFRE, but the [±45]3S FFRE specimens offer better specific fatigue endurance than similar GFRE, in the studied life range (<2 × 106). Overall, the three-stage stiffness degradation is observed in all cases except for [0/90]3S FFRE specimens, which present a stiffening phenomenon of around 2–3% which could be related to the straightening of the microfibrils.  相似文献   

18.
Lithium ion conducting glass and glass ceramic of the composition Li1.4[Al0.4Ge1.6(PO4)3], have been synthesized. The monolithic glass pieces on thermal treatment resulted in single-phase glass ceramic with the Nasicon structure. Experiments with different electrodes proved that the lithium electrodes provide accurate values for the ionic conductivity using impedance spectroscopy. σionic of the glass ceramic was found to be 3.8×10−5 S cm−1 at 40°C with an activation energy (Ea) of 0.52 eV. The corresponding values for the glass are 2.7×10−9 S cm−1 and 0.95 eV, respectively. The Arrhenius dependence of σionic with temperature in glass and glass ceramic is interpreted with a hopping mechanism from which the microscopic characteristics of the lithium cation motion are deduced.  相似文献   

19.
Intralaminar and interlaminar fatigue crack growth behaviours under mode I loading were investigated with conventional and interlayer toughened unidirectional CFRP laminates. For intralaminar crack growth tests, initial defects were introduced using “intralaminar film insertion method”, in which a release film is inserted inside a single lamina prepreg. A fatigue test under a constant maximum energy release rate, Gmax, was carried out using DCB specimens. It was found that the intralaminar fatigue crack growth property of the interlayer toughened CFRP laminates was the same as that of the conventional CFRP laminates. For the interlayer toughened CFRP laminates, the Gmax with a given crack growth rate, da/dN, was much lower for intralaminar crack growth than for interlaminar crack growth. The da/dN-Gmax curve at zero crack extension, Δa = 0, which was estimated by extrapolating the da/dNa relationship, was not affected by bridging fibres, and most conservative for the interlayer toughened CFRP laminates.  相似文献   

20.
We report the resistive switching (RS) characteristics of tungsten nitride (WNx) thin films with excellent complementary metal-oxide-semiconductor (CMOS) compatibility. A Ti/WNx/Pt memory cell clearly shows bipolar RS behaviors at a low voltage of approximately ±2.2 V. The dominant conduction mechanisms at low and high resistance states were verified by Ohmic behavior and trap-controlled space-charge-limited conduction, respectively. A conducting filament model by a redox reaction explains the RS behavior in WNx films. We also demonstrate the memory characteristics during pulse operation, including a high endurance over >105 cycles and a long retention time of >105 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号