首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents experimental fatigue results for GFRP face sheet/balsa core sandwich beams with face sheet wrinkle defects, subjected to fully reversed in-plane fatigue loading. An estimate of the fatigue design limit is presented, based on static test results, finite element analyses and application of the Northwestern University failure criteria. The presence of a wrinkle defect reduced the fatigue life by approximately 66%, compared to that of an unnotched reference laminate. Furthermore, the results from the fatigue tests revealed that the design limit was initially overestimated, as the specimens loaded close to the predicted design limit typically failed before reaching the target life, or reached test run-out with visible face sheet damage indicating imminent final failure in the worst case. It was found that specimens would reach target life with no visible or otherwise detectable damage by lowering the fatigue load amplitude below 80% of the predicted design limit. By extrapolating the test results it appears that the undamaged specimens would reach a fatigue life of 107–108 load cycles and would thus be safe for design of wind turbine blades.  相似文献   

2.
We consider a composite package formed by two curved external Euler-Bernoulli beams, which sandwich an elastic core with negligible bending strength but providing the shear coupling of the external layers. This coupling considerably affects the gross response of the composite structure. There is an extensive literature on straight sandwich beams of this type, but very little attention has been paid to the effects of curvature. Here, an analytical linear elastic model is proposed for beams with arbitrary variable curvature. Equilibrium equations and boundary conditions are obtained through a variational approach. Useful simplifications are possible for the case of moderately curved beams and beams with constant curvature.  相似文献   

3.
Fracture analysis of sandwich beams with a viscoelastic interface crack under quasi-static and dynamic loading has been studied. Firstly, a three-parameter standard solid material model was employed to describe the viscoelasticity of the adhesive layer. And a novel interfacial fracture analysis model called three material media model was established, in which an interface crack was inserted in the viscoelastic layer. Secondly, a finite element procedure based on Rice J-integral and Kishimoto J-integral theories was used to analyze quasi-static and dynamic interface fracture behavior of the sandwich beam, respectively. Finally, the influence of viscoelastic adhesive layer on the quasi-static J-integral was discussed. In addition, comparison of quasi-static Rice J-integral with Kishimoto J-integral under various loading rates was carried out. The numerical results show that the oscillating characteristic of dynamic J-integral is more evident with shorter loading rise time.  相似文献   

4.
A key objective dealing with 3D sandwich structures is to maximize the through-thickness stiffness, the strength of the core and the core to faces adhesion. The Napco® technology was especially designed for improving such material properties and is under investigation in this paper. In particular, the potential of the process is characterized using a micromechanical modelling combined to a parametric probabilistic model. An experimental analysis is further detailed and validates the theoretical estimates of the core-related elastic properties. It is readily shown that the technology is able to produce parts with significantly improved mechanical properties. Finally, thanks to the probabilistic aspect of the modelling, the study allows to establish a link between the randomness of the process and the uncertainties of the final mechanical properties. Thus, the present approach can be used to optimize the technology as well as to properly design structures.  相似文献   

5.
Acoustic emission based tensile characteristics of sandwich composites   总被引:4,自引:0,他引:4  
Sandwich composite static and fatigue testing results indicated the predominant failure to be the core damage followed by interfacial debonding, resin cracking and fiber rupture. Under static testing, crack was observed to initiate in the core and ensue planar propagation near the interface with the facesheets; whereas, onset of crack initiation in the facesheets served as a precursor to the catastrophic failure. Multiple failure initiation and propagation sites in the core and intermittent interfacial debonding were consistently observed under fatigue. An acoustic emission based stiffness reduction model is presented that seems to accurately identify the extent of damage in sandwich composites subjected to fatigue loading conditions.  相似文献   

6.
The distributions of properties across the thickness (core) and in the plane (face sheets) that minimise the interlaminar stresses at the interface with the core are determined solving the Euler–Lagrange equations of an optimisation problem in which the membrane and transverse shear energy contributions are made stationary. The bending stiffness is maximised, while the energy due to interlaminar stresses is minimised. As structural model, a refined zig-zag model with a high-order variation of displacements is employed. Simplified, sub-optimal distributions obtainable with current manufacturing processes appear effective for reducing the critical interfacial stress concentration, as shown by the numerical applications.  相似文献   

7.
This paper presents the effects of adhesive properties on structural performance of reinforced concrete (RC) beams strengthened with carbon fiber reinforced plastic (CFRP) strips. The epoxy adhesives modified with liquid rubber of different content were used to bond the CFRP strips, and four point bending experiments were carried out on RC beams. The experimental results show that different CFRP strip thickness of 0.22 and 0.44 mm resulted in a transition of failure mechanism from interfacial debonding along the CFRP-concrete interface to concrete cover separation starting from the end of CFRP strips in the concrete. Moreover, it is suggested that no matter interfacial debonding or concrete cover separation, the rubber modifier enhanced the structural performance by increasing the maximum load-carrying capacity and the corresponding ductility, compared with the beams bonded with a neat epoxy resin. The improvement of structural performance due to modified adhesive was associated with the modification of stress profiles along the CFRP-concrete interface especially the stress concentration at the end of FRP, and the enhanced interlaminar fracture toughness. Rubber modified epoxy therefore is worth further studying in practical repair applications.  相似文献   

8.
The structural response of dynamically loaded monolithic and sandwich beams made of aluminum skins with different cores is determined by loading the end-clamped beams at mid-span with metal foam projectiles. The sandwich beams comprise aluminum honeycomb cores and closed-cell aluminum foam cores. Laser displacement transducer was used to measure the permanent transverse deflection of the back face mid-point of the beams. The resistance to shock loading is evaluated by the permanent deflection at the mid-span of the beams for a fixed magnitude of applied impulse and mass of beam. It is found that sandwich beams with two kind cores under impact loading can fail in different modes. Experimental results show the sandwich beams with aluminum honeycomb cores present mainly large global deformation, while the foam core sandwich beams tend to local deformation and failure, but all the sandwich beams had a higher shock resistance, then the monolithic beam. For each type of beams, the dependence of transverse deflection upon the magnitude of the applied impulse is measured. Moreover, the effects of face thickness and core thickness on the failure and deformation modes were discussed. Results indicated that the structural response of sandwich beams is sensitive to applied impulse and structural configuration. The experimental results are of worth to optimum design of cellular metallic sandwich structures.  相似文献   

9.
The junction between a curved and a straight sandwich beam is investigated experimentally using electronic speckle pattern interferometry. This technique facilitates a whole field measurement of the displacements through the thickness of the sandwich beam. The experimental results are compared with results obtained using a high order sandwich theory model. The results generally show good agreement within the accuracy of the measurements, thus indicating that the gross response of the model is predicted accurately by the high order sandwich theory, while the localised bending effects in the vicinity of curvature change in sandwich panels have not been verified experimentally.  相似文献   

10.
Yong-Hyun Lee  Ki-Ju Kang   《Materials & Design》2009,30(10):4434-4443
Wire-woven Bulk Kagome (WBK) is a new truss type cellular metal fabricated by systematic assembling of helical wires in six directions. WBK looks promising with respect to morphology, fabrication cost, and raw materials. In this paper, first, the geometry and the effect of the geometry such as the curved shape of the struts, which compose the truss structure of WBK, are elaborated. Then, analytic solutions for the material properties of WBK and the maximum loads withstood by a WBK-cored sandwich panel under bending are derived. Design optimization is carried out in two ways: one is based on the weight of the sandwich panel, and the other is based on the slenderness ratio of the WBK core. The performance of the WBK is evaluated and compared with those of other periodic cellular metals. With designs fully optimized with respect to the first way mentioned, the WBK-cored panel outperformed the octet counter part. With a specified constraint on the core thickness, the WBK truss core panel performed as well as a honeycomb cored panel.  相似文献   

11.
In this study the perforation of composite sandwich structures subjected to high-velocity impact was analysed. Sandwich panels with carbon/epoxy skins and an aluminium honeycomb core were modelled by a three-dimensional finite element model implemented in ABAQUS/Explicit. The model was validated with experimental tests by comparing numerical and experimental residual velocity, ballistic limit, and contact time. By this model the influence of the components on the behaviour of the sandwich panel under impact load was evaluated; also, the contribution of the failure mechanisms to the energy-absorption of the projectile kinetic energy was determined.  相似文献   

12.
A concept for improving the shear stiffness properties of balsa core material for sandwich structures is presented. The concept is based on utilization of the strongly orthotropic properties of the balsa wood, applying an appropriate transverse layup sequence. The effective core material shear modulus is modeled using basic laminate theory. This is subsequently validated through sandwich beam bending and lap shear experiments. Compared to the standard balsa core systems, a substantial increase in the shear stiffness is demonstrated, whereas the transverse stiffness is reduced. The concept is suitable for mass production, using standard plywood fabrication technology.  相似文献   

13.
An experimental study of the in-plane compressive failure mechanism of foam cored sandwich specimens with an implanted through-width face/core debond is presented. Tests were conducted on sandwich specimens with glass/vinylester and carbon/epoxy face sheets over various PVC foam cores. Observation of the response of the specimens during testing showed that failure occurred by buckling of the debonded face sheet, followed by rapid debond growth towards the ends of the specimen. The compression strength of the sandwich specimens containing a debond decreased quite substantially with increasing debond size. A high-density core resulted in less strength decrease at any given debond size. Examination of the failure surfaces after separation of the face sheet and core revealed traces of core material deposited on the face sheet evidencing cohesive core failure. The amount of core material adhered to the face sheet decreased with increasing foam density indicating increasing tendency for core/resin interfacial failure.  相似文献   

14.
Sandwich composite are used in numerous structural applications, with demonstrated weight savings over conventional metals and solid composite materials. The increasing use of sandwich composites in defense structures, particularly those which may be exposed to shock loading, demands for a thorough understanding of their response to suc highly transient loadings. In order to fully utilize their potential in such extreme conditions, design optimization of the skin and core materials are desirable. The present study is performed for a novel type of sandwich material, TRANSONITE® made by pultrusion of 3-D woven 3WEAVE® E-glass fiber composites skin preforms integrally stitched to polyisocyanurate TRYMERTM 200L foam core. The effect of core stitching density on the transient response of three simply supported sandwich panels loaded in a shock tube is experimentally studied in this work. The experimental program is focused on recording dynamic transient response by high-speed camera and post-mortem evaluation of imparted damage. The obtained experimental results reveal new important features of the transient deformation, damage initiation and progression and final failure of sandwich composites with unstitched and stitched foam cores. The theoretical study includes full 3-D dynamic transient analysis of displacement, strain and stress fields under experimentally recorded surface shock pressure, performed with the use of 3-D MOSAIC analysis approach. The obtained theoretical and experimental results for the transient central deflections in unstitched and two stitched foam core sandwiches are mutually compared. The comparison results reveal large discrepancies in the case of unstitched sandwich, much smaller discrepancies in the case of intermediate stitching density, and excellent agreement between theoretical and experimental results for the sandwich with the highest stitching density. The general conclusion is that further comprehensive experimental and theoretical studies are required in order to get a thorough understanding of a very complex behavior of composite sandwiches under shock wave loading.  相似文献   

15.
The effects of temperature on the bending properties and failure mechanism of carbon fiber reinforced polymer composite sandwich structure with pyramidal truss cores were investigated and presented in this paper. The three-point bending tests of composite sandwich structures were performed at seven different temperatures, and the scanning electron microscope was used to examine the fiber-matrix interface properties in order to understand the deformation and failure mechanism. Then the effects of temperature on deformation modes, failure mechanism and bending failure load were studied and analyzed. The results showed that the temperature has visible impact on the deformation modes, failure mechanism, and bending failure load. The bending failure load decreased as temperature increased, which was caused by the degradation of the matrix properties and fiber-matrix interface properties at high temperature. The analytical formulae were also presented to predict the bending stiffness and failure load of composite sandwich structures at different temperatures.  相似文献   

16.
The objective of this paper is to investigate the structural response of carbon fiber sandwich panels subjected to blast loading through an integrated experimental and numerical approach. A total of nine experiments, corresponding to three different blast intensity levels were conducted in the 28-inch square shock tube apparatus. Computational models were developed to capture the experimental details and further study the mechanism of blast wave-sandwich panel interactions. The peak reflected overpressure was monitored, which amplified to approximately 2.5 times of the incident overpressure due to fluid-structure interactions. The measured strain histories demonstrated opposite phases at the center of the front and back facesheets. Both strains showed damped oscillation with a reduced oscillation frequency as well as amplified facesheet deformations at the higher blast intensity. As the blast wave traversed across the panel, the observed flow separation and reattachment led to pressure increase at the back side of the panel. Further parametric studies suggested that the maximum deflection of the back facesheet increased dramatically with higher blast intensity and decreased with larger facesheet and core thickness. Our computational models, calibrated by experimental measurements, could be used as a virtual tool for assessing the mechanism of blast-panel interactions, and predicting the structural response of composite panels subjected to blast loading.  相似文献   

17.
A novel method for the in-situ repair of composite sandwich structures using microvascular networks and cyanoacrylate (CA) adhesive systems has been presented. Upon a damage event, the vascules become ruptured, providing a route for the introduction of adhesive directly into the damage site. The efficacy of the two repair agents was first assessed under static and fatigue conditions using a modified double cantilever beam (DCB) method. Once baseline fracture behaviour of the cyanoacrylates has been established, they were further assessed by injection into a series of pre-damaged T-joint specimens. The presence of the vasculature was shown to have no detrimental impact on mechanical performance, whilst both of the cyanoacrylates were shown to be highly effective in the recovery of stiffness and ultimate strength of the T-joint specimens.  相似文献   

18.
The study is devoted to the application of boundary integral equations to problems for interface cracks with initial opening under harmonic loading. As a numerical example the initially opened linear interface crack under the normally incident tension–compression wave is considered. The problem is solved taking the contact interaction of the crack’s faces into account. The convergence of the iterative algorithm is analysed and the stress intensity factors (opening and transverse shear modes) are given for the wide range of the wave number.  相似文献   

19.
The paper illustrates the application of a finite element tool for simulating the structural and damage response of foam-based sandwich composites subjected to low-velocity impact. Onset and growth of typical damage modes occurring in the composite skins, such as fibre fracture, matrix cracking and delaminations, were simulated by the use of three-dimensional damage models (for intralaminar damage) and interfacial cohesive laws (for interlaminar damage). The nonlinear behaviour of the foam core was simulated by a crushable foam plasticity model. The FE results were compared with experimental data acquired by impact testing on sandwich panels consisting of carbon/epoxy facesheets bonded to a PVC foam. Good agreement was obtained between predictions and experiments in terms of force histories, force–displacement curves and dissipated energy. The proposed model was also capable of simulating correctly nature and size of impact damage, and of capturing the key features of individual delaminations at different depth locations.  相似文献   

20.
Due to their higher strength-to-weight and stiffness-to-weight ratios compared to metals, fiber reinforced composite materials are a great alternative for use in many structural applications. However these properties lead to poor acoustic performance as composite materials are excellent noise radiators. This is particularly true for sandwich composite structures. Therefore the focus of this study is to investigate the effect of a core thickness change on the vibrational properties of Rohacell foam/carbon-fiber face sheet sandwich composite beams. Four different foam core thicknesses were explored, using a combination of experimental and analytical methods to characterize sound and vibrational properties of the sandwich beams. First, the wave number responses of the beams were obtained, from which coincidence frequencies were identified. Second, from the frequency response functions the structural damping loss factor, η, was determined using the half-power bandwidth method. Experimental and analytical results show that the relationship between core thickness and coincidence frequency is non-linear. A drastic increase in coincidence frequency was observed for the sandwich beam with the thinnest core thickness due to the low bending stiffness. Moreover this low bending stiffness results in low damping values, and consequently high wave number amplitude responses at low frequency ranges (<1000 Hz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号