首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocomposites containing four different polyamide 12 (PA12) types and three grades of multiwalled carbon nanotubes (MWNTs) were prepared via small-scale melt processing to study the effect of different MWNTs and the influence of polymer properties on the dispersion of the fillers and the electrical properties of the composites. Under the selected mixing conditions the lowest electrical percolation threshold of 0.7 wt.% was found for Nanocyl™ NC7000 in low viscous PA12. Moreover, big influences of the end group functionality (acid or amine excess) and the melt viscosity of the matrix were found. Composites of PA12 with acid excess showed lower percolation thresholds than those based on amine terminated materials. At constant end group ratio low viscous matrices resulted in lower percolation thresholds than high viscous materials. The best MWNT dispersion was obtained in both high viscous PA12 composites. In these systems the mixing speed was varied indicating an optimum concerning electrical conductivity at 150 rpm as compared to 50 and 250 rpm.  相似文献   

2.
The reactive extrusion of lauryl lactam to polyamide 12 (PA12) of controlled molar mass was successfully performed in a microcompounder. The maximum residual monomer content was less than 1%. The in-situ polymerization in the presence of 1–5 wt.% multiwalled carbon nanotubes (MWCNTs) was studied and the processing conditions were optimized with respect to the electrical resistivity and MWCNT dispersion. Runs which yielded in higher molar mass PA12 resulted in better dispersion of MWCNTs, whereas nanocomposites with lower molar mass PA12 had lower electrical percolation thresholds (MWCNT concentration ∼1 wt.%). A high screw speed of 200 rpm was identified to cause best dispersion and the lowest percolation threshold.  相似文献   

3.
The volume resistivity of polyamide-6(PA6)/multi-walled carbon nanotube (MWCNT) composites was found to be further reduced by adding a kind of ultra-fine rubber particle (URP) with average diameter of 150 nm due to non-volume exclusion effect. With the addition of 16 phr URP, the percolation threshold of PA6/MWCNT composites was reduced from 6 phr MWCNTs to 3 phr. Besides, at a constant loading of 4 phr MWCNTs, increase of URP loading led to two changes and a plateau for the volume resistivity of composites. The morphological observations of composites revealed that the decrease of volume resistivity was attributed to both homogenous dispersion and stretching of MWCNTs in PA6. The mechanism on better dispersion and stretching of MWCNTs with the help of URP was also given.  相似文献   

4.
Aiming at developing carbon fibre/polyamide-12 (CF/PA) composite powders for manufacturing high-performance components by selective laser sintering (SLS), the preparation, characteristics and sintering process of the composite powders and mechanical properties of sintered components were studied. Surfaces of the carbon fibres were treated by the oxidation modification and coated with polyamide-12 through the dissolution-precipitation process to provide good interfacial adhesion and homogenous dispersion within the polyamide-12 matrix. The particle size and micro-morphology analyses show that the CF/PA composite powders with 30 wt%, 40 wt% and 50 wt% carbon fibres present the suitable powder sizes and format for SLS. The incorporation of carbon fibres into the polyamide-12 matrix decreases the initial melting temperature and consequently lowers the SLS part bed temperatures, implying lower energy requirement and less thermal degradation in the sintering process. The CF/PA composites also represent higher thermal stability than the pure polyamide-12. The CF/PA sintered components with 30 wt%, 40 wt% and 50 wt% carbon fibres exhibit the greatly enhanced flexural strengths by 44.5%, 83.3%, 114%, and the flexural modulus by 93.4%, 129.4%, 243.4%, respectively, as compared with the pure polyamide-12 sintered parts. Fractured surface analysis shows that the carbon fibres are encapsulated and bonded well with the polyamide matrix. The complex SLS parts with the thinnest wall of 0.6 mm, the density of 1.09 ± 0.02 g/cm3 and the relatively density of 94.13 ± 1.72% were manufactured using the CF/PA composite powder with 30 wt% carbon fibres. This study demonstrates that the CF/PA composite powders prepared by the surface treatment and dissolution-precipitation method represent suitable interfacial adhesion, filler dispersion, particle sizes and sintering behaviours for SLS and enable the manufacture of complex components with high performance.  相似文献   

5.
Multiwall carbon nanotubes (MWNT) were incorporated in melt-mixed co-continuous blends of polyamide 6 (PA6) and acrylonitrile–butadiene–styrene (ABS) using a conical twin-screw microcompounder. The state of dispersion of MWNT in the blends was assessed through AC electrical conductivity measurements and melt-rheological investigations. The electrical and rheological percolation threshold in PA6/ABS blends was ~3–4 and ~1–2 wt% MWNT, respectively. A unique reactive modifier (sodium salt of 6-amino hexanoic acid, Na–AHA) was employed to facilitate ‘network-like’ structure of MWNT and to confine them in a specific phase. This was achieved by establishing specific interactions with the delocalized ‘π-electron’ clouds of MWNT and melt-interfacial reaction during melt-mixing. The electrical percolation threshold was significantly reduced in the blends (~0.25 wt%) in the presence of Na–AHA modified MWNT and even coincided with the rheological percolation threshold. Significant refinement in the co-continuous structure was also observed in the presence of Na–AHA modified MWNT.  相似文献   

6.
Effects of molecular weight and structure of polyamide 6 (PA6) on morphology and properties of PA6/MWCNT prepared by melt mixing were investigated. Microscopic analysis showed fine dispersion of MWCNT within low viscosity PA6s due to domination of melt infiltration into MWCNT agglomerate at low viscosity matrices with linear structure. Rheological data indicated good interfacial interaction with no percolation of MWCNT up to 2 wt% loading. DSC thermograms showed nucleating role of MWCNT on crystallization of PA6s with marginal effect on crystallinity. Experimental data supported with micromechanical model showed limited improvement on mechanical properties, but it was closely consistent with degree of dispersion of MWCNT.  相似文献   

7.
Electrically conductive and thermally stable polyamide 6 (PA 6) nanocomposites were prepared through one-step in situ polymerization of ε-caprolactam monomer in the presence of electrically insulating and thermally unstable graphene oxide (GO) nanosheets. These nanocomposites show a low percolation threshold of ∼0.41 vol.% and high electrical conductivity of ∼0.028 S/m with only ∼1.64 vol.% of GO. Thermogravimetric analysis and X-ray photoelectron spectroscopy results of GO before and after thermal treatment at the polymerization temperature indicate that GO was reduced in situ during the polymerization process. X-ray diffraction patterns and scanning electron microscopy observation confirm the exfoliation of the reduced graphene oxide (RGO) in the PA 6 matrix. The low percolation threshold and high electrical conductivity are attributed to the large aspect ratio, high specific surface area and uniform dispersion of the RGO nanosheets in the matrix. In addition, although GO has a poor thermal stability, its PA 6 nanocomposite is thermally stable with a satisfactory thermal stability similar to those of neat PA 6 and PA 6/graphene nanocomposite. Such a one-step in situ polymerization and thermal reduction method shows significant potential for the mass production of electrically conductive polymer/RGO nanocomposites.  相似文献   

8.
Multiwall carbon nanotubes (MWNT) were melt-mixed with 50/50 co-continuous blends of polyamide 6 (PA6) and acrylonitrile-butadiene-styrene (ABS). Blending sequence and moulding processes were found to have a strong impact on the conductivity of the blends with MWNT. Aggregated nature of the tubes, migration during processing and skin-core morphology generated during mould cooling step were found to be crucial parameters affecting the electrical conductivity of the blends. We report here the role of a reactive modifier: sodium salt of 6-amino hexanoic acid (Na-AHA) aiding in uniform dispersion of the MWNT in the 50/50 PA6/ABS blends and restricting the tubes utilizing specific interactions during melt-mixing in the PA6 phase in the blends. We further varied the MWNT to Na-AHA ratio from 1:1 to 1:15 to optimize the concentration of MWNT required in achieving lower electrical percolation threshold in co-continuous PA6/ABS blends. The associated percolation threshold was observed at approximately 0.5 wt% MWNT with high dielectric constant.  相似文献   

9.
In this study, poly(p-phenylene sulfide) based nanocomposites containing multi-walled carbon nanotubes (MWNTs) were produced by dilution of a 15 wt.% MWNT/PPS masterbatch via twin screw extrusion process. The electrical conductivities of the nanocomposites were measured and percolation threshold was observed below 0.77 vol.% MWNTs. The state of dispersion and distribution quality of MWNTs was analyzed on macro- and nanoscale through transmission light and scanning electron microscopy (SEM). A good deagglomeration of primary macroagglomerates and a homogenous MWNT distribution on nanoscale was found. The dependence of conductivity on MWNT concentration was estimated using statistical percolation theory which matches the experimental data quite well. A new empirical equation was set up to fit the electrical conductivity using quantitative values of visible percolating MWNTs which were detected by charge contrast imaging in SEM.  相似文献   

10.
The effects of small amount of organically modified Clay (Clay) in polyamide 6 (PA6) on fire performance and thermal mechanical properties of Clay/PA6/woven glass fibres (GF) laminates are investigated by cone calorimeter test, dynamic mechanical thermal analysis (DMTA), and heat distort temperature (HDT) measurement. The mechanical properties, such as tensile and flexural properties of Clay/PA6 composites and Clay/PA6/GF laminates were also measured. Up to 3 wt.% Clay in a Clay/PA6/GF laminate with fibre volume fraction of 30 vol.% delayed the ignition time and peak heat release rate (PHRR) time by 55% and 118%, respectively, even though the value of the PHRR or the HDT was not significantly affected. 2 wt.% Clay increased flexural modulus and strength of the Clay/PA6/GF laminate by 10% and 16%, respectively, but more Clay did not increase the mechanical properties accordingly. Small amount of Clay does not affect glass fibre dominated properties, such as HDT, but do affect matrix dominated properties, and significantly affect the fire performance in terms of delaying ignition time and PHRR time. Optimization of laminate making process could benefit from additions of more Clay, therefore further improve fire performance and enhance mechanical properties.  相似文献   

11.
For manufacturing thermally stable electric heating composite films, a sulfonated poly(1,3,4-oxadiazole) (sPOD) was synthesized and it was composited with pristine MWCNT of 0.1–10.0 wt% by an ultrasonicated solution mixing and casting. SEM images revealed that the pristine MWCNTs were dispersed well in the composite matrix via π–π interaction between the MWCNTs and the aromatic rings of sPOD backbone. The electrical resistivity of the composite films decreased considerably from ∼109 Ω cm to ∼100 Ω cm with the increment of the MWCNT content by forming a percolation threshold at ∼0.026 wt%. The composite films with 5.0–10.0 wt% MWCNT contents, which had sufficiently low electrical resistivity of ∼103–100 Ω cm, exhibited excellent electric heating performance by attaining high maximum temperatures as well as electric energy efficiency. Since the dominant thermal decomposition of the composite films took place at ∼500 °C, sPOD/MWCNT composite films with low electrical resistivity could be used for high performance electric heating materials for advanced applications.  相似文献   

12.
In this paper, electrical and mechanical properties of Poly (p-phenylene sulfide) (PPS)/multi-wall carbon nanotubes (MWNTs) nanocomposites were reported. The composites were obtained just by simply melt mixing PPS with raw MWNTs without any pre-treatment. The dispersion of MWNTs and interfacial interaction were investigated through SEM &TEM and Raman spectra. The rheological test and crystallization behavior were also investigated to study the effects of MWNTs concentration on the structure and chain mobility of the prepared composites. Though raw MWNTs without any pre-treatment were used, a good dispersion and interaction between PPS and MWNTs have been evidenced, resulting in a great improvement of electrical properties and mechanical properties of the composites. Raman spectra showed a remarkable decrease of G band intensity and a shift of D bond, demonstrating a strong filler–matrix interaction, which was considered as due to π–π stacking between PPS and MWNTs. The storage modulus (G′) versus frequency curve presented a plateau above the percolation threshold of about 2–3 wt% with the formation of an interconnected nanotube structure, indicative of ‘pseudo-solid-like’ behavior. Meanwhile, a conductive percolation threshold of 5 wt% was achieved and the conductivity of nanocomposites increased sharply by several orders of magnitude. The difference between electrical and rheological percolation threshold, and the effect of critical percolation on the chain mobility, especially on crystallization behavior of PPS, were discussed. In summary, our work provides a simple and fast way to prepare PPS/MWNTs nanocomposites with good dispersion and improved properties.  相似文献   

13.
Raman spectroscopy is used to access the dispersion state of DWNTs in a PEEK polymer matrix. The interaction of the outer tube with the matrix can be determined from the line shape of the Raman G band. This allows us to distinguish regions where the nanotubes are well dispersed and regions where the nanotubes are agglomerated. The percolation threshold of the electrical conductivity of the double wall carbon nanotubes (DWNTs)/PEEK nanocomposites is found to be at 0.2-0.3 wt%. We find a maximum electrical conductivity of 3 × 10−2 S cm−1 at 2 wt% loading. We detect nanotube weight concentrations as low as 0.16 wt% by Raman spectroscopy using a yellow excitation wavelength. We compare the Raman images with transmission electron microscopy images and electrical conductivity measurements. A statistical method is used to find a quantitative measure of the DWNTs dispersion in the polymer matrix from the Raman images.  相似文献   

14.
An innovative method has been successfully developed to improve the electrical conductivity of polyamide 6/polystyrene (PA6/PS) blends in this paper. PA6/PS blends containing multi-walled carbon nanotubes (MWCNTs) are prepared by the radical polymerization of styrene in the presence of ?-caprolactam (CL) and MWCNTs, followed by the in-situ anionic ring-opening polymerization of CL. In the resulted PA6/PS blends, MWCNTs are selectively located at the interface of PA6 and PS. Because the interface of 0.5 and 1.0 wt.% MWCNTs filled blends with PA6/PS weight ratio of 70/30 is continuous, a MWCNTs conductive pathway is formed in these two blends, which results in a decrease of volume resistivity by about 9 orders of magnitude.  相似文献   

15.
Functional polypropylene (PP) nanocomposites were prepared by melt compounding with multiwalled carbon nanotubes (MWNT) as the electrically conductive component and barium titanate (BT) spherical nanoparticles as the ferroelectric component. To make PP electrically conductive, more than 3 wt.% MWNT is required. Surface modification of either MWNT or BT with titanate coupling agent further improves the electrical conductivity of the PP/MWNT/BT ternary nanocomposites. Interestingly, by modifying both MWNT and BT, 2 wt.% MWNT are sufficient to make the ternary nanocomposite electrically conductive. In addition, the incorporation of MWNT greatly increases the dielectric permittivity of PP/BT nanocomposites. However, to retain a low dielectric loss, the MWNT loading should be slightly less than the percolation threshold of the nanocomposites. The improved electrical conductivity and dielectric properties make the ternary nanocomposites attractive in practical applications.  相似文献   

16.
Hydrogen storage and electrical properties of different hyperbranched polymer systems beside a nanocomposite are studied. The polymers examined are aliphatic hyperbranched poly urea (P-Urea), polyamide amine (PAMAM) and polyamide amine/vanadium oxide (PAMAM/VOx) nanocomposite. At 80 K and up to 20 bar hydrogen pressure, the hydrogen storage capacity of hyperbranched P-Urea reached 1.6 wt%, 0.9 wt% in case of PAMAM and 0.6 wt% for VOx. The hydrogen storage capacity significantly enhanced when PAMAM and VOx form a nanocomposite and increased up to 2 wt%. At 298 K and up to 20 bar, all the samples did not show measurable hydrogen uptake. Electrical properties of the samples are also investigated; the measurements showed complete insulating behavior at hydrogenation measuring temperature. These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage.  相似文献   

17.
Carbon nanofiber (CNF)/poly(methyl methacrylate) (PMMA) nanocomposites were prepared via melt-compounding, solvent casting and in situ polymerization. Mechanical properties, rheological behavior and electrical resistivity were investigated in specimens with varying CNF loadings. The three processing techniques were compared. Improved properties were obtained in the solvent processed and in situ polymerized composites. The rheological and electrical percolation of these nanocomposites appeared in the same concentration set (between 1 and 5 wt%). No changes were found in melt-compounding, even by the addition of 10 wt% of CNFs. Electrical resistivity of the samples prepared by solvent casting was measured before and after pressing in the hot plate press. It is remarkable that in the non-pressed samples the CNFs formed an efficient 3-D conductive network, yielding composites with percolation thresholds even six orders of magnitude lower than after pressing, where this 3-D network was destroyed.  相似文献   

18.
Poly(lactic acid) (PLA)/multi-walled carbon nanotube (MWNT) composites were melt spun with different take-up velocities (max. 100 m/min) to obtain electrically conductive fibres. The incorporation of MWNT contents between 0.5 and 5.0 wt.% was realised in a previous melt mixing process using twin-screw extrusion. The relative resistance change of the fibres caused by contact with different solvents (water, n-hexane, ethanol, methanol) and solvent concentrations was used as liquid sensing response, whereas the time dependent resistance was recorded during immersion and drying cycles. Transmission electron microscopy and Raman spectroscopy indicated enhanced orientation of MWNT along the fibre axis with take-up velocity, resulting in decreased sensitivity during solvent contact. Additionally, sensitivity decreased as the weight content of MWNT increased and was furthermore dependent on the characteristics of used solvents. In context with the targeted application of leakage detection, fibres with low MWNT amount and low draw down ratio (as extruded fibres with 2 wt.% MWNT) are suitable, as they showed relative resistance changes of up to 87% after 10 min immersion in methanol even if the recovery upon drying was suppressed significantly.  相似文献   

19.
The objectives of this research article is to evaluate the mechanical and tribological properties of polyamide66/polypropylene (PA66/PP) blend, graphite (Gr) filled PA66/PP, nanoclay (NC) filled PA66/PP and NC plus short carbon fiber (NC + SCF) filled PA66/PP composites. All composites were fabricated using a twin screw extruder followed by injection molding. The mechanical properties such as tensile, flexure, and impact strengths were investigated in accordance with ASTM standards. The friction and sliding wear behaviour was studied under dry sliding conditions against hard steel on a pin-on-disc apparatus. Scanning electron micrographs were used to analyze the fracture morphologies. From the experimental investigation, it was found that the presence of NC and SCF fillers improved the hardness of PA66/PP blend. Further, the study reveals that the tensile and flexural strength of NC + SCF filled PA66/PP was higher than that of PA66/PP blend. Inclusion of micro and nanofillers reduced the wear rate of PA66/PP blend. The wear loss of the composites increased with increasing sliding velocity. The lowest wear rate was observed for the blend with nanoclay and SCF fillers. The wear rates of the blends with micro/nanofillers vary from 30–81% and lower than that of PA66/PP blend. The wear resistance of the PA66/PP composites was found to be related to the stability of the transfer film on the counterface. The results have been supplemented with scanning electron micrographs to help understand the possible wear mechanisms.  相似文献   

20.
Cetyltrimethyl ammonium bromide (CTAB) templated mesoporous indium tin oxide (ITO) thin films were deposited on quartz plates by an evaporation-induced self-assembly (EISA) process using a dip coating method. The starting solution was prepared by mixing indium chloride, tin chloride, and CTAB dissolved in ethanol. Five to fifty mole percent Sn-doped ITO films were prepared by heat-treatment at 400 °C for 5 h. The structural, adsorptive, electrical, and optical properties of mesoporous ITO thin films were investigated. Results indicate that the mesoporous ITO thin films have an ordered two-dimensional hexagonal (p6mm) structure, with nanocrystalline domains in the inorganic oxide framework. The continuous thin films have highly ordered pore sizes (>20 Å), high Brunauer-Emmett-Teller (BET) surface area up to 340 m2/g, large pore volume (>0.21 cm3/g), outstanding transparency in the visible range (>80%), and show a minimum resistivity of ρ = 1.2 × 10−2 Ω cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号