首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-phase composites have been studied by incorporating carbon nanotubes (CNTs) as a secondary reinforcement in an epoxy matrix which was then reinforced with glass fiber mat. Different types of CNTs e.g. amino functionalized carbon nanotubes (ACNT) and pristine carbon nanotubes (PCNT) were homogeneously dispersed in the epoxy matrix and two-ply laminates were fabricated using vacuum-assisted resin infusion molding technique. The issues related to CNT dispersion and interfacial bonding and its affect on the mechanical properties have been studied. An important finding of this study is that PCNT scores over ACNT in composites prepared under certain conditions. This is a very significant finding since PCNT is available at a much lower cost than ACNT.  相似文献   

2.
In this study, a new approach for health monitoring of GF reinforced composites is presented by incorporating percolated carbon nanotubes (CNTs) into the composites interphase. This is achieved applying CNT-filled coatings to glass fibres (GF). Taking advantage of the electrical properties of CNTs, this allows a highly localized monitoring of the composites interphase.  相似文献   

3.
Vibration damping characteristic of nanocomposites and carbon fiber reinforced polymer composites (CFRPs) containing multiwall carbon nanotubes (CNTs) have been studied using the free and forced vibration tests. Several vibration parameters are varied to characterize the damping behavior in different amplitudes, natural frequencies and vibration modes. The damping ratio of the hybrid composites is enhanced with the addition of CNTs, which is attributed to sliding at the CNT-matrix interfaces. The damping ratio is dependent on the amplitude as a result of the random orientation of CNTs in the epoxy matrix. The natural frequency shows negligible influence on the damping properties. The forced vibration test indicates that the damping ratios of the CFRP composites increase with increasing CNT content in both the 1st and 2nd vibration modes. The CNT-epoxy nanocomposites also show similar increasing trends of damping ratio with CNT content, indicating the enhanced damping property of CFRPs arising mainly from the improved damping property of the modified matrix. The dynamic mechanical analysis further confirms that the CNTs have a strong influence on the composites damping properties. Both the dynamic loss modulus and loss factor of the nanocomposites and the corresponding CFRPs show consistent increases with the addition of CNTs, an indication of enhanced damping performance.  相似文献   

4.
High quality multi-walled carbon nanotubes (CNTs) grown at high density using a low temperature growth method are used as an alternative material to polymer sizing and is utilised in a series of epoxy composites reinforced with carbon fibres to provide improved physical and electrical properties. We report improvements for sizing-sensitive mechanical and physical properties, such as the interfacial adhesion, shear properties and handling of the fibres, whilst retaining resin-infusion capability. Following fibre volume fraction normalisation, the carbon nanotube-modified carbon fibre composite offers improvements of 146% increase in Young’s modulus; 20% increase in ultimate shear stress; 74% increase in shear chord modulus and an 83% improvement in the initial fracture toughness. The addition of CNTs imparts electrical functionalisation to the composite, enhancements in the surface direction are 400%, demonstrating a suitable route to sizing-free composites with enhanced mechanical and electrical functionality.  相似文献   

5.
This paper presents the development of glass fibres coated with nanocomposites consisting of carbon nanotubes (CNTs) and epoxy. Single glass fibres with different CNT content coating are embedded in a polymer matrix as a strain sensor for composite structures. Raman spectroscopy and electrical response of glass fibres under mechanical load are coupled for in situ sensing of deformation in composites. The results show that the fibres with nanocomposite coating exhibit efficient stress transfer across the fibre/matrix interface, and these with a higher CNT content are more prone to fibre fragmentation at the same matrix strain. A relationship between the fibre stress and the change in electrical resistance against the fibre strain is established. The major finding of this study has a practical implication in that the fibres with nanocomposite coating can serve as a sensor to monitor the deformation and damage process in composites.  相似文献   

6.
In this study, the mechanical and thermal properties of epoxy composites using two different forms of carbon nanotubes (powder and masterbatch) were investigated. Composites were prepared by loading the surface-modified CNT powder and/or CNT masterbatch into either ductile or brittle epoxy matrices. The results show that 3 wt.% CNT masterbatch enhances Young’s modulus by 20%, tensile strength by 30%, flexural strength by 15%, and 21.1 °C increment in the glass transition temperature (by 34%) of ductile epoxy matrix. From scanning electron microscopy images, it was observed that the CNT masterbatch was uniformly distributed indicating the pre-dispersed CNTs in the masterbatch allow an easier path for preparation of CNT-epoxy composites with reduced agglomeration of CNTs. These results demonstrate a good CNT dispersion and ductility of epoxy matrix play a key role to achieve high performance CNT-epoxy composites.  相似文献   

7.
In this paper, high pressure homogenization (HPH) served as the main dispersion method for making carbon nanotubes (CNTs)-modified composite materials. A new quantitative approach was proposed to evaluate the dispersion of CNTs in epoxy resin by combining microscopic images with maximum likelihood estimation theory. The results were in good agreement with those obtained from optical observation and ultraviolet–visible (UV–vis) absorbance measurement. Moreover, the dispersion process specific to HPH processing was analyzed with the aid of the proposed approach. The changes of the morphologies and lengths of CNTs in HPH were illustrated. It was found that, in the first few cycles, the lengths of CNTs fell significantly and the entanglements remained severe. In the following cycles, individual CNTs were gradually separated from agglomerates and the lengths experienced a slow decline. After homogeneous dispersion, the transverse tensile properties of CNTs-modified carbon fiber reinforced epoxy composites (CFRP) got obviously ameliorated.  相似文献   

8.
Interlaminar shear properties of fibre reinforced polymer composites are important in many structural applications. Matrix modification is an effective way to improve the composite interlaminar shear properties. In this paper, diglycidyl ether of bisphenol-F/diethyl toluene diamine system is used as the starting epoxy matrix. Multi-walled carbon nanotubes (MWCNTs) and reactive aliphatic diluent named n-butyl glycidyl ether (BGE) are employed to modify the epoxy matrix. Unmodified and modified epoxy resins are used for fabricating glass fibre reinforced composites by a hot-press process. The interlaminar shear strength (ILSS) of the glass fibre reinforced composites is investigated and the results indicate that introduction of MWCNT and BGE obviously enhances the ILSS. In particular, the simultaneous addition of 0.5 wt.% MWCNTs and 10 phr BGE leads to the 25.4% increase in the ILSS for the glass fibre reinforced composite. The fracture surfaces of the fibre reinforced composites are examined by scanning electron microscopy and the micrographs are employed to explain the ILSS results.  相似文献   

9.
The goal of this work is the evaluation of nanoscaled reinforcements; in particular nanodiamonds (NDs) and carbon nanotubes (CNTs) on properties of titanium matrix composites (TiMMCs). By using nano sized materials as reinforcement in TiMMCs, superior mechanical and physical properties can be expected. Additionally, titanium powder metallurgy (P/M) offers the possibility of changing the reinforcement content in the matrix within a very wide range. In this work, TiMMCs have been produced from titanium powder (Grade 4). The manufacturing of the composites was done by hot pressing, followed by the characterisation of the TiMMCs. The Archimedes density, hardness and oxygen content of the specimens in addition to the mechanical properties were compared and reported in this work. Moreover, XRD analysis and SEM observations revealed in situ formed titanium carbide (TiC) phase after hot pressing in TiMMCs reinforced with NDs and CNTs, at 900 °C and 1100 °C respectively. The strengthening effect of NDs was more significant since its distribution was more homogeneous in the matrix.  相似文献   

10.
Carbon nanotubes (CNTs) are an excellent candidate for the reinforcement of composite materials owing to their distinctive mechanical and electrical properties. Reticulate carbon nanotubes (R-CNTs) with a 2D or 3D configuration have been manufactured in which nonwoven connected CNTs are homogeneously distributed and connected with each other. A composite reinforced by R-CNTs can be fabricated by infiltrating a polymer into the R-CNT structure, which overcomes the inherent disadvantages of the lack of weaving of the CNTs and the low strength of the interface between CNTs and the polymer. In this paper, a 2D plane strain model of a R-CNT composite is presented to investigate its micro-deformation and effective stiffness. Using the two-scale expansion method, the effective stiffness coefficients and Young’s modulus are determined. The influences of microstructural parameters on the micro-deformation and effective stiffness of the R-CNT composite are studied to aid the design of new composites with optimal properties. It is shown that R-CNT composites have a strong microstructure-dependence and better effective mechanical properties than other CNT composites.  相似文献   

11.
Carbon nanotubes (CNTs) grafted on fibres are widely used to reinforce composites in order to improve their mechanical properties. This study concerned the tribological properties of CNTs grafted on carbon fibres by the flame method. The aim of this study was to determine whether CNTs on fibres suffer damage under stress, similar to those applied during composite manufacturing, which can damage composite properties, particularly fibre/matrix adhesion. For this purpose, reciprocating friction tests were performed to examine the resistance of CNTs and highlight a wear mechanism. The results showed that the presence of CNTs increased the coefficient of friction in the first friction cycles and then decreased it to close to the COF of the fibre without CNTs. The wear mechanism showed that after a small number of friction cycles, the CNTs were flattened out and formed a transfer film.  相似文献   

12.
In the current study we investigated the effect of carbon nanotubes (CNTs) addition on the erosive wear response of epoxy resin and carbon fibre reinforced laminates (CFRPs) and demonstrated the positive synergy of CNTs and carbon fibres, which resulted in almost 50% decrease of the erosion rate (ER) of the CFRPs at high impact angles (90°). Incorporation of CNTs led in slight increase of the ER of the epoxy systems, especially at low impact angles. The relative fibre orientation in the CFRPs had a negligible effect on the erosive wear response mainly due to the quasi isotropic nature of the tested CFRPs. Based on the erosion efficiency parameter the response of the epoxy systems was characterised as semi-brittle, while CFRPs behaved in a brittle manner. Scanning electron micrograph provided evidence that the presence of CNTs reduced the amount of broken and/or detached fibres in the case of CFRPs.  相似文献   

13.
The compressive properties of epoxy with different carbon nanotubes (CNTs) contents at quasi-static and high strain rates loading had been investigated via experiment to evaluate the compressive failure behaviors and modes at different CNTs contents and different strain rates. The results indicated that the stress train curves were strain rate sensitive, and the compressive stiffness, compressive failure stress of composites with various CNTs contents was increased with the strain rates and CNTs contents. The compressive failure stress and the compressive failure modes of the composites were apparently different as the change of CNTs contents.  相似文献   

14.
Carbon nanotube (CNT) reinforced composites have been identified as promising structural materials for the mechanical components of microelectromechanical systems (MEMS), potentially leading to advanced performance. High alignment and volume fraction of CNTs in the composites are the prerequisites to achieve such desirable mechanical characteristics. In particular, horizontal CNT alignment in composite films is necessary to enable high longitudinal moduli of the composites which is crucial for the performance of microactuators. A practical process has been developed to transfer CNT arrays from vertical to horizontal alignment which is followed by in situ wetting, realign and pressurized consolidation processes, which lead to a high CNT volume fraction in the range of 46-63%. As a result, SU8 epoxy composite films reinforced with horizontally aligned CNTs and a high volume faction of CNTs have been achieved with outstanding mechanical characteristics. The transverse modulus of the composite films has been characterised through nanoindentation and the longitudinal elastic modulus has been investigated. An experimental transverse modulus of 9.6 GPa and an inferred longitudinal modulus in the range of 460-630 GPa have been achieved, which demonstrate effective CNT reinforcement in the SU8 matrix.  相似文献   

15.
Utilizing the extra-ordinary properties of carbon nanotube (CNT) in metal matrix composite (MMC) for macroscopic applications is still a big challenge for science and technology. Very few successful attempts have been made for commercial applications due to the difficulties incorporating CNTs in metals with up-scalable processes. CNT reinforced copper and copper alloy (bronze) composites have been fabricated by well-established hot-press sintering method of powder metallurgy. The parameters of CNT–metal powder mixing and hot-press sintering have been optimized and the matrix materials of the mixed powders and composites have been evaluated. However, the effect of shape and size of metal particles as well as selection of carbon nanotubes has significant influence on the mechanical and electrical properties of the composites. The hardness of copper matrix composite has improved up to 47% compared to that of pure copper, while the electrical conductivity of bronze composite has improved up to 20% compared to that of the pure alloy. Thus carbon nanotube can improve the mechanical properties of highly-conductive low-strength copper metals, whereas in low-conductivity high-strength copper alloys the electrical conductivity can be improved.  相似文献   

16.
Halloysite nanotubes (HNT) were effectively incorporated into epoxy resin and used for infusion of carbon fibre textiles, resulting in epoxy/halloysite nanotube/carbon fibre (EP/HNT/CF) multi-scale composites. The distribution of nanotubes in the composites was examined by SEM. The thermomechanical properties of the composites were characterized by dynamic mechanical analyser (DMA). A 25% enhancement was recorded for the storage modulus of EP/HNT/CF composite in the glassy state. Moreover, the Tg of the laminates increased with the addition of HNT, and the values were even higher than the Tg of their matrix. Additionally, the Izod impact strength of the composites has been improved. These results indicate a synergistic effect between HNT and carbon fibres.  相似文献   

17.
In this study we investigate the tensile behaviour of unidirectional and cross-ply composites reinforced with ductile stainless steel fibres and modified adhesion to the epoxy matrix. Results show that annealed stainless steel fibres have a potential in designing tough polymer composites for structural applications. The stiffness of the UD composites made from these fibres is 77GPa combined with the strain-to-failure between 15% and 18% depending on the level of adhesion. Silane treatments were used to modify the adhesion. By treating the stainless steel fibres with different silane coupling agents, an increase of 50% in the transverse 3-point-bending strength was realised. Increasing the adhesion by 50% leads to a higher tensile strength and strain-to-failure in both UD and cross-ply laminates and a higher in-situ strength of the 90° plies. It also delays formation of matrix cracks and hinders growth of debonding.  相似文献   

18.
The main properties of epoxy composites reinforced with aligned carbon nanotubes (CNTs) have been studied. The alignment was carried out in a specific designed device applying a weak magnetic field (0.3 T) with permanent magnets. CNTs were modified with magnetite nanoparticles (Fe3O4) functionalized, in a one-stage-process which does not require use of strong acids or aggressive treatments which could affect the structural integrity of CNTs. The study by transmission electron microscopy confirmed that the Fe3O4 nanoparticles were closely bonded over CNT surfaces. The thermo-mechanical and tensile properties of composites measured were higher than neat epoxy resin and were similar for both composites: reinforced with neat CNTs and magnetite–CNT hybrid nanofillers. The electrical behaviour indicates a high anisotropy for aligned composites, showing an increase of one order of magnitude for the electrical conductivity in the direction of aligned nanotubes.  相似文献   

19.
A simple synthetic method for placing a mesoporous silica coating on multi-wall carbon nanotubes (CNTs@MS) was developed to improve the surface compatibility with regard to a polar epoxy matrix. In addition, the mesoporous silica shell with silanol groups on the CNTs provides a platform to attach silane molecules (e.g. 3-glycidoxypropyltrimethoxysilane, GPTMS) that enable the CNTs@MS to be incorporated into the epoxy matrix at a content of up to 20 wt.%. The viscosities of the CNTs@MS- and GPTMS-modified-CNTs@MS–epoxy composites are much lower than that of the CNTs–epoxy, and then the voids in the GPTMS-modified-CNTs@MS–epoxy composites are most significantly reduced. The effects of the CNTs@MS and GPTMS-modified CNTs@MS on the mechanical and thermal properties of the epoxy composite are investigated. The results show that the GPTMS-modified CNTs@MS improved the filler–epoxy matrix interaction, and has better compatibility in epoxy than the CNTs@MS. As the surface compatibility and interaction strength increase in the epoxy matrix, the enhancement in storage modulus, thermal conductivity and reduction in the coefficient of thermal expansion are in the following order: GPTMS-modified CNTs@MS > CNTs@MS  CNTs.  相似文献   

20.
It is an obstacle issue for carbon nanotubes (CNTs) particularly for single-wall carbon nanotubes (SWCNTs) with nano-level dispersion in fiber reinforced polymer matrix composites. In this paper, the dispersing agents such as Volan and BYK-9076 were employed to treat SWCNTs to improve their dispersion in the glass fiber/epoxy (GF/EP) composites. The dispersing results of SWCNTs in composites were observed by scanning electron microscopy (SEM). Then the glass transition temperature (Tg) of these kinds of composites with treated and untreated SWCNTs were obtained by dynamic mechanical thermal analysis (DMTA). Moreover, the flexural tests were performed on these composites. Based on the experiment results, the dispersion of SWCNTs was improved and the flexural property of SWCNTs/GF/EP composite was enhanced too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号